Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 8(9): e1629779, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428529

RESUMEN

Osteosarcoma (OS) is the most common bone tumor in pediatric and adolescent/young adult patients yet little is known about the microenvironment that supports this aggressive disease. We have used targeted gene expression profiling and immunohistochemistry to characterize the microenvironment of metastatic and non-metastatic OS specimens from pediatric patients exhibiting poor histologic response to chemotherapy. Our results indicate that metastatic specimens exhibit lymphocyte exclusion as T cells are confined to the periphery of the pulmonary lesions. Furthermore, our data provides evidence of vascular dysfunction in metastatic OS indicated by increased expression of VEGFA, an increased ANGPT2:ANGPT1 gene expression ratio, and decreased expression of SELE, the gene encoding the adhesion molecule E-selectin. Moreover, correlation analyses show an inverse relationship between lymphocyte abundance and markers of vascular dysfunction exclusively in the metastatic specimens. Together, our data shows that the non-metastatic OS specimens demonstrate increased expression of various immunotherapeutic targets in comparison metastatic specimens and identifies vascular dysfunction and lymphocyte exclusion as important processes for therapeutic intervention in metastatic disease.

2.
Oncoimmunology ; 7(12): e1475873, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524885

RESUMEN

Osteosarcomas are aggressive bone tumors for which therapeutic advances have not improved over several decades. Unlike most pediatric tumors, the osteosarcoma genome is remarkably unstable, characterized by numerous copy number alterations and chromosomal structural aberrations. In this study, we asked if the targetable immune checkpoints CD274 (PD-L1), PDCD1LG2 (PD-L2), CD276 (B7-H3) and IDO1 are impacted by copy number alterations in osteosarcoma. Of the 215 osteosarcoma samples investigated, PD-L1/PD-L2, B7-H3 and IDO1 were independently gained at frequencies of approximately 8-9%, with a cumulative frequency of approximately 24%. RNA sequencing data from two independent cohorts revealed that B7-H3 is the most highly expressed immune checkpoint gene among the four investigated. We also show that IDO1 is preferentially expressed in pediatric solid tumors and that increased protein expression of B7-H3 and IDO1 are significantly associated with inferior survival in patient samples. Using human osteosarcoma cell lines, we demonstrate that IDO1 is gained in MG63 and G292 cells and that the IDO1 inhibitor, epacadostat, inhibits the enzymatic activity of IDO1 in a dose-dependent manner in these cells. Together, these data reveal the genomic and transcriptomic profiles of PD-L1, PD-L2, B7-H3 and IDO1 in osteosarcoma and identifies a potential context for targeted immunotherapeutic intervention in a subset of patients.

3.
Ecol Evol ; 8(22): 10989-11008, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30519422

RESUMEN

For tropical marine species, hotspots of endemism occur in peripheral areas furthest from the center of diversity, but the evolutionary processes that lead to their origin remain elusive. We test several hypotheses related to the evolution of peripheral endemics by sequencing ultraconserved element (UCE) loci to produce a genome-scale phylogeny of 47 butterflyfish species (family Chaetodontidae) that includes all shallow water butterflyfish from the coastal waters of the Arabian Peninsula (i.e., Red Sea to Arabian Gulf) and their close relatives. Bayesian tree building methods produced a well-resolved phylogeny that elucidated the origins of butterflyfishes in this hotspots of endemism. We show that UCEs, often used to resolve deep evolutionary relationships, represent an important tool to assess the mechanisms underlying recently diverged taxa. Our analyses indicate that unique environmental conditions in the coastal waters of the Arabian Peninsula probably contributed to the formation of endemic butterflyfishes. Older endemic species are also associated with narrow versus broad depth ranges, suggesting that adaptation to deeper coral reefs in this region occurred only recently (<1.75 Ma). Even though deep reef environments were drastically reduced during the extreme low sea level stands of glacial ages, shallow reefs persisted, and as such there was no evidence supporting mass extirpation of fauna in this region.

4.
Nat Ecol Evol ; 2(4): 688-696, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29531346

RESUMEN

The Cretaceous-Palaeogene (K-Pg) mass extinction is linked to the rapid emergence of ecologically divergent higher taxa (for example, families and orders) across terrestrial vertebrates, but its impact on the diversification of marine vertebrates is less clear. Spiny-rayed fishes (Acanthomorpha) provide an ideal system for exploring the effects of the K-Pg on fish diversification, yet despite decades of morphological and molecular phylogenetic efforts, resolution of both early diverging lineages and enormously diverse subclades remains problematic. Recent multilocus studies have provided the first resolved phylogenetic backbone for acanthomorphs and suggested novel relationships among major lineages. However, these new relationships and associated timescales have not been interrogated using phylogenomic approaches. Here, we use targeted enrichment of >1,000 ultraconserved elements in conjunction with a divergence time analysis to resolve relationships among 120 major acanthomorph lineages and provide a new timescale for acanthomorph radiation. Our results include a well-supported topology that strongly resolves relationships along the acanthomorph backbone and the recovery of several new relationships within six major percomorph subclades. Divergence time analyses also reveal that crown ages for five of these subclades, and for the bulk of the species diversity in the sixth, coincide with the K-Pg boundary, with divergences between anatomically and ecologically distinctive suprafamilial clades concentrated in the first 10 million years of the Cenozoic.


Asunto(s)
Biodiversidad , Evolución Biológica , Peces/genética , Filogenia , Animales , Proteínas de Peces/análisis , Peces/anatomía & histología
5.
Syst Biol ; 66(6): 881-895, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334176

RESUMEN

Ostariophysi is a superorder of bony fishes including more than 10,300 species in 1100 genera and 70 families. This superorder is traditionally divided into five major groups (orders): Gonorynchiformes (milkfishes and sandfishes), Cypriniformes (carps and minnows), Characiformes (tetras and their allies), Siluriformes (catfishes), and Gymnotiformes (electric knifefishes). Unambiguous resolution of the relationships among these lineages remains elusive, with previous molecular and morphological analyses failing to produce a consensus phylogeny. In this study, we use over 350 ultraconserved element (UCEs) loci comprising 5 million base pairs collected across 35 representative ostariophysan species to compile one of the most data-rich phylogenies of fishes to date. We use these data to infer higher level (interordinal) relationships among ostariophysan fishes, focusing on the monophyly of the Characiformes-one of the most contentiously debated groups in fish systematics. As with most previous molecular studies, we recover a non-monophyletic Characiformes with the two monophyletic suborders, Citharinoidei and Characoidei, more closely related to other ostariophysan clades than to each other. We also explore incongruence between results from different UCE data sets, issues of orthology, and the use of morphological characters in combination with our molecular data. [Conserved sequence; ichthyology; massively parallel sequencing; morphology; next-generation sequencing; UCEs.].


Asunto(s)
Characiformes/clasificación , Characiformes/genética , Secuencia Conservada/genética , Filogenia , Animales
6.
Mol Phylogenet Evol ; 99: 1-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26944013

RESUMEN

Bodianus wrasses comprise one of the most diverse genera of labrids. Also known as hogfishes due to the presence of a large pig-like snout, Bodianus species are found in warm waters across the Pacific, Atlantic and Indian Oceans. To this date no densely sampled molecular phylogeny is available for this group, and a single morphological study did not include two genera (Clepticus and Semicossyphus) that have been shown to belong within hogfishes by molecular studies. Our study produced the first multi-locus molecular phylogeny of Bodianus species, and corroborated the non-monophyly of this group without the inclusion of the Creole wrasse (Clepticus) and the sheepheads (Semicossyphus). We further showed that hogfishes and allies started to radiate during the Early Miocene, ∼20Ma, and that while this group originated in the Indo-western and South-western Pacific, it experienced multiple episodes during which it successfully invaded different geographic regions and/or ocean basins.


Asunto(s)
Perciformes/clasificación , Filogenia , Filogeografía , Animales , Teorema de Bayes , Océano Índico , Modelos Teóricos , Factores de Tiempo
7.
Funct Ecol ; 29(9): 1197-1208, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26538789

RESUMEN

1. Superior physical competence is vital to the adaptive behavioral routines of many animals, particularly those that engage in elaborate socio-sexual displays. How such traits evolve across species remains unclear. 2. Recent work suggests that activation of sex steroid receptors in neuromuscular systems is necessary for the fine motor skills needed to execute physically elaborate displays. Thus, using passerine birds as models, we test whether interspecific variation in display complexity predicts species differences in the abundance of androgen and estrogen receptors (AR and ERα) expressed in the forelimb musculature and spinal cord. 3. We find that small-scale evolutionary patterns in physical display complexity positively predict expression of the AR in the main muscles that lift and retract the wings. No such relationship is detected in the spinal cord, and we do not find a correlation between display behavior and neuromuscular expression of ERα. Also, we find that AR expression levels in different androgen targets throughout the body - namely the wing muscles, spinal cord, and testes - are not necessarily correlated, providing evidence that evolutionary forces may drive AR expression in a tissue-specific manner. 4. These results suggest co-evolution between the physical prowess necessary for display performance and levels of AR expression in avian forelimb muscles. Moreover, this relationship appears to be specific to muscle and AR-mediated, but not ERα-mediated, signaling. 5. Given that prior work suggests that activation of muscular AR is a necessary component of physical display performance, our current data support the hypothesis that sexual selection shapes levels of AR expressed in the forelimb skeletal muscles to help drive the evolution of adaptive motor abilities.

8.
PLoS One ; 8(6): e65923, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23824177

RESUMEN

Ray-finned fishes constitute the dominant radiation of vertebrates with over 32,000 species. Although molecular phylogenetics has begun to disentangle major evolutionary relationships within this vast section of the Tree of Life, there is no widely available approach for efficiently collecting phylogenomic data within fishes, leaving much of the enormous potential of massively parallel sequencing technologies for resolving major radiations in ray-finned fishes unrealized. Here, we provide a genomic perspective on longstanding questions regarding the diversification of major groups of ray-finned fishes through targeted enrichment of ultraconserved nuclear DNA elements (UCEs) and their flanking sequence. Our workflow efficiently and economically generates data sets that are orders of magnitude larger than those produced by traditional approaches and is well-suited to working with museum specimens. Analysis of the UCE data set recovers a well-supported phylogeny at both shallow and deep time-scales that supports a monophyletic relationship between Amia and Lepisosteus (Holostei) and reveals elopomorphs and then osteoglossomorphs to be the earliest diverging teleost lineages. Our approach additionally reveals that sequence capture of UCE regions and their flanking sequence offers enormous potential for resolving phylogenetic relationships within ray-finned fishes.


Asunto(s)
Aletas de Animales , Secuencia Conservada , Filogenia , Animales , Funciones de Verosimilitud , Análisis de Secuencia de ADN
9.
Mol Phylogenet Evol ; 69(3): 884-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23831455

RESUMEN

Anguilliformes are an ecologically diverse group of predominantly marine fishes whose members are easily recognized by their extremely elongate bodies, and universal lack of pelvic fins. Recent studies based on mitochondrial loci, including full mitogenomes, have called into question the monophyly of both the Anguilliformes, which appear to be paraphyletic without the inclusion of the Saccopharyngiformes (gulper eels and allies), as well as other more commonly known eel families (e.g., Congridae, Serrivomeridae). However, no study to date has investigated anguilliform interrelationships using nuclear loci. Here we present a new phylogenetic hypothesis for the Anguilliformes based on five markers (the nuclear loci Early Growth Hormone 3, Myosin Heavy Polypeptide 6 and Recombinase Activating Gene 1, as well as the mitochondrial genes Cytochrome b and Cytochrome Oxidase I). Our sampling spans 148 species and includes 19 of the 20 extant families of anguilliforms and saccopharyngiforms. Maximum likelihood analysis reveals that saccopharyngiform eels are deeply nested within the anguilliforms, and supports the non-monophyly of Congridae and Nettastomatidae, as well as that of Derichthyidae and Chlopsidae. Our analyses suggest that Protanguilla may be the sister group of the Synaphobranchidae, though the recent hypothesis that this species is the sister group to all other anguilliforms cannot be rejected. The molecular phylogeny, time-calibrated using a Bayesian relaxed clock approach and seven fossil calibration points, reveals a Late Cretaceous origin of this expanded anguilliform clade (stem age ~116 Ma, crown age ~99 Ma). Most major (family level) lineages originated between the end of the Cretaceous and Early Eocene, suggesting that anguilliform radiation may have been facilitated by the recovery of marine ecosystems following the KP extinction.


Asunto(s)
Evolución Biológica , Anguilas/clasificación , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , Anguilas/genética , Fósiles , Genes Mitocondriales , Funciones de Verosimilitud , Modelos Genéticos , Análisis de Secuencia de ADN
10.
Mol Phylogenet Evol ; 69(1): 165-76, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23727054

RESUMEN

Balistoid fishes (triggerfishes, filefishes, leatherjackets) represent one of the most successful radiations of tetraodontiform fishes across the world's oceans. Balistids (triggerfishes) are largely circumtropical in coral reef environments while most monacanthids (filefishes, leatherjackets) are distributed across reef and non-reef habitats in the Indo-western Pacific. Although members of these clades share a distinctive mode of locomotion that relies upon coordinated oscillation or undulation of enlarged dorsal and anal fins, species richness as well as morphologial and ecological diversity are generally considered to be higher in monacanthids than in triggerfishes. Explicit evolutionary comparisons of diversity patterns between these sister clades have been hampered by the paucity of systematic studies of filefishes relative to triggerfishes. Furthermore, a well-sampled molecular timescale for balistoids is lacking, hindering our understanding of the evolutionary history of these fishes. Here, we produce the largest balistoid molecular dataset to date, based on two mitochondrial and three nuclear loci, for a total of 86 species, and we time-calibrate it using three tetraodontiform fossils. We show that several of the traditional monacanthid genera are not monophyletic and that the balistid Xenobalistes tumidipectoris is nested within the genus Xanthichthys, and suggest that the generic name Xenobalistes be dissolved. Our timetree reveals a Late Miocene origin of balistids, in accordance with previous studies, but a Late Eocene age for the crown monacanthids, which experienced significant diversification during the Late Oligocene and Early Miocene. Comparative analyses reveal no significant family-level differences in rates of speciation or body size evolution, suggesting that the greater diversity of filefishes can be attributed to their more ancient crown age compared to triggerfishes.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/clasificación , Especiación Genética , Filogenia , Tetraodontiformes/clasificación , Distribución Animal , Animales , Teorema de Bayes , Biodiversidad , Arrecifes de Coral , ADN Mitocondrial/genética , Fósiles , Modelos Genéticos , Análisis de Secuencia de ADN , Tetraodontiformes/anatomía & histología , Tetraodontiformes/genética , Factores de Tiempo
11.
Mol Phylogenet Evol ; 69(1): 177-87, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23727595

RESUMEN

Tetraodontiform fishes represent one of the most peculiar radiations of teleost fishes. In spite of this, we do not currently have a consensus on the phylogenetic relationships among the major tetraodontiform lineages, with different morphological and molecular datasets all supporting contrasting relationships. In this paper we present the results of the analysis of tetraodontiform interrelationships based on two mitochondrial and 20 nuclear loci for 40 species of tetraodontiforms (representing all of the 10 currently recognized families), as well as three outgroups. Bayesian and maximum likelihood analyses of the concatenated dataset (18,682 nucleotides) strongly support novel relationships among the major tetraodontiform lineages. Our results recover two large clades already found in mitogenomic analyses (although the position of triacanthids differ), while they strongly conflict with hypotheses of tetraodontiform relationships inferred by previous studies based on morphology, as well as studies of higher-level teleost relationships based on nuclear loci, which included multiple tetraodontiform lineages. A parsimony gene-tree, species-tree analysis recovers relationships that are mostly congruent with the analyses of the concatenated dataset, with the significant exception of the position of the pufferfishes+porcupine fishes clade. Our findings suggest that while the phylogenetic placement of some tetraodontiform lineages (triacanthids, molids) remains problematic even after sequencing 22 loci, an overall molecular consensus is beginning to emerge regarding the existence of several major clades. This new hypothesis will require a re-evaluation of the phylogenetic usefulness of several morphological features, such as the fusion of several jaw bones into a parrot-like beak, or the reduction and loss of some of the fins, which may have occurred independently more times than previously thought.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/clasificación , Especiación Genética , Filogenia , Tetraodontiformes/clasificación , Distribución Animal , Animales , Teorema de Bayes , Biodiversidad , ADN Mitocondrial/genética , Maxilares/anatomía & histología , Modelos Genéticos , Análisis de Secuencia de ADN , Tetraodontiformes/anatomía & histología , Tetraodontiformes/genética , Factores de Tiempo
12.
Mol Phylogenet Evol ; 68(1): 150-60, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542000

RESUMEN

We present the most comprehensive time-calibrated, species-level hypothesis of the timing of Acanthuridae (surgeonfishes and allies) evolution based on 76% of the extant diversity and nine genes. We recover two major acanthurid clades, Nasinae and Acanthurinae, and infer a much more recent Nasinae crown age (17 Ma) compared to a previous dating study for Naso. The Acanthurinae represent an older group that originated ~42 Ma, with most diversification occurring since the Early Miocene (beginning ~21 Ma). Our results strongly support a paraphyletic Acanthurus and Ctenochaetus, with multiple analyses recovering a clade grouping Ctenochaetus, A. nubilus and A. pyroferus. Contrary to previous studies, we also provide strong evidence that thick-walled, gizzard-like stomachs evolved only once within Acanthurus and that this morphology has a common origin in Acanthurus and Ctenochaetus. Based on our molecular analyses, in conjunction with the large body of morphological evidence, we recommend dissolving the genus Ctenochaetus into the genus Acanthurus.


Asunto(s)
Citocromos b/clasificación , Complejo IV de Transporte de Electrones/clasificación , Especiación Genética , Proteínas Nucleares/clasificación , Perciformes/clasificación , Filogenia , Animales , Arrecifes de Coral , Citocromos b/genética , Complejo IV de Transporte de Electrones/genética , Fósiles , Proteínas Nucleares/genética , Perciformes/genética , Análisis de Secuencia de ADN , Análisis Espacio-Temporal
13.
Zootaxa ; 3669: 551-70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26312357

RESUMEN

Some of the more valuable contributions of a standardized DNA sequence database (the DNA barcode) are matching specimens of different life stages and confirming the species identity of individuals from distant locations. These applications can facilitate the detective work required to solve difficult taxonomic problems. In this case, a match was made between the COI mtDNA sequence of an adult male wrasse recently caught at the tip of Baja California in Mexico in deep water (30-100m) and sequences from a series of unusual larvae collected about 3500 km to the south, in the open ocean over the Galápagos Rift hydrothermal vents in 1985. The Baja adults fit the recent description of Halichoeres raisneri Baldwin & McCosker, 2001 from the Galápagos and Cocos Islands. However, another deepwater labrid is known from the same site and depth in Baja; it is the type locality for the century-old holotype and only specimen of the Cape Wrasse Pseudojulis inornatus Gilbert, 1890 (later as Pseudojuloides inornatus). Deepwater video images from the tip of Baja show wrasses identical to H. raisneri photographed in Galápagos but who also fit the description of Pseudojulis inornatus. This coincidence led to a closer investigation of the holotype with x-ray, which revealed unanticipated caniniform teeth (vs. incisiform in Pseudojuloides) and an error in the fin-ray count in the original description, both of which mistakenly separated Halichoeres raisneri. The two species now match in markings, meristics, and morphology as well as overlapping range and are therefore synonymized. Phenetic and phylogenetic trees using mtDNA and nuclear DNA sequences show the species is not close to any other lineage and does not group with the other julidine labrids of the New World or the Pseudojuloides or Halichoeres of the Indo-Pacific. The distinctive larval morphology, long, thin, and flattened with a sharply pointed black-tipped snout, resembles no other described labrid larvae and, without an available genus, the new genus Sagittalarva Victor, n. gen. and the new combination Sagittalarva inornata (Gilbert, 1890), n. gen., n. comb. are described.


Asunto(s)
Código de Barras del ADN Taxonómico , Perciformes/clasificación , Perciformes/genética , Animales , Femenino , Larva/anatomía & histología , Larva/clasificación , Larva/genética , Larva/fisiología , Masculino , Océano Pacífico , Perciformes/anatomía & histología , Perciformes/fisiología , Filogenia , Especificidad de la Especie
14.
Mol Phylogenet Evol ; 66(1): 153-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23036494

RESUMEN

Boxfishes (superfamily Ostracioidea, order Tetraodontiformes) are comprised of 37 species within the families Aracanidae (13 sp.) and Ostracidae (24 sp.). These species are characterized by several dramatic reductive trends in their axial and appendicular skeleton, and by the presence of a carapace formed by enlarged and thickened scale plates. While strong support exists for the monophyly of both families, interspecific relationships remain unclear as no species-level molecular phylogeny currently exists for either of these two clades, and the only hypotheses of relationships are based on morphological studies that were mostly restricted to generic-level relationships. Here we present the results of a new phylogenetic study of a dataset composed of 9 loci for 26 species of boxfishes using both likelihood and Bayesian methods. Our topology strongly supports the monophyly of both groups, and additionally provides strongly supported resolution for the vast majority of species-level interrelationships. Based on this new phylogeny, we suggest changing the taxonomic status of the species Lactoria fornasini to Tetrasomus fornasini, and Rhynchostracion nasus to Ostracion nasus. Using a Bayesian approach to divergence time estimation we inferred a Paleocene origin of the Ostracioidea, with an estimated origin of the reef-associated ostraciids spanning the Eocene and Oligocene, and a Miocene/Pliocene origin of the aracanids.


Asunto(s)
Evolución Biológica , Filogenia , Tetraodontiformes/clasificación , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Funciones de Verosimilitud , Modelos Genéticos , Análisis de Secuencia de ADN , Tetraodontiformes/genética
15.
Am Nat ; 181(1): 94-113, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23234848

RESUMEN

Coral reef fishes represent one of the most spectacularly diverse assemblages of vertebrates on the planet, but our understanding of their mode of diversification remains limited. Here we test whether the diversity of the damselfishes (Pomacentridae), one of the most species-rich families of reef-associated fishes, was produced by a single or multiple adaptive radiation(s) during their evolutionary history. Tests of the tempo of lineage diversification using a time-calibrated phylogeny including 208 species revealed that crown pomacentrid diversification has not slowed through time as expected under a scenario of a single adaptive radiation resulting from an early burst of diversification. Evolutionary modeling of trophic traits similarly rejected the hypothesis of early among-lineage partitioning of ecologically important phenotypic diversity. Instead, damselfishes are shown to have experienced iterative convergent radiations wherein subclades radiate across similar trophic strategies (i.e., pelagic feeders, benthic feeders, intermediate) and morphologies. Regionalization of coral reefs, competition, and functional constraints may have fueled iterative ecological radiation and convergent evolution of damselfishes. Through the Pomacentridae, we illustrate that radiations may be strongly structured by the nature of the constraints on diversification.


Asunto(s)
Evolución Biológica , Arrecifes de Coral , Perciformes/anatomía & histología , Perciformes/genética , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Evolución Molecular , Proteínas de Peces/genética , Especiación Genética , Datos de Secuencia Molecular , Perciformes/clasificación , Filogenia , Análisis de Secuencia de ADN
16.
Evolution ; 65(7): 1912-26, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21729047

RESUMEN

Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species.


Asunto(s)
Aletas de Animales/anatomía & histología , Evolución Biológica , Tetraodontiformes/anatomía & histología , Tetraodontiformes/fisiología , Aletas de Animales/fisiología , Animales , Conducta Animal , Tamaño Corporal , Locomoción , Modelos Genéticos , Filogenia , Tetraodontiformes/genética
17.
Mar Ecol Prog Ser ; 428: 245-258, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-25505806

RESUMEN

The depauperate marine ecosystems of the Hawaiian Archipelago share a high proportion of species with the southern and western Pacific, indicating historical and/or ongoing connections across the large oceanic expanse separating Hawaii from its nearest neighbors. The rate and direction of these interactions are, however, unknown. While previous biogeographic studies have consistently described Hawaii as a diversity sink, prevailing currents likely offer opportunities for larval export. To assess interactions between the remote reefs of the Hawaiian Archipelago and the species rich communities of the Central and West Pacific, we surveyed 14 nuclear microsatellite loci (nDNA; n = 857) and a 614 bp segment of mitochondrial cytochrome b (mtDNA; n = 654) in the Yellow Tang (Zebrasoma flavescens). Concordant frequency shifts in both nDNA and mtDNA reveal significant population differentiation among three West Pacific sites and Hawaii (nDNA F' CT = 0.116, mtDNA ϕ CT = 0.098, P < 0.001). SAMOVA analyses of microsatellite data additionally indicate fine scale differentiation within the 2600 km Hawaiian Archipelago (F' SC = 0.026; P < 0.001), with implications for management of this heavily-exploited aquarium fish. Mismatch analyses indicate the oldest contemporary populations are in the Hawaiian Archipelago (circa 318,000 y), with younger populations in the West Pacific (91,000 - 175,000 y). Estimates of Yellow Tang historical demography contradict expectations of Hawaii as a population sink, and instead indicate asymmetrical gene flow, with Hawaii exporting rather than importing Yellow Tang larvae.

18.
PLoS One ; 6(12): e28913, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216141

RESUMEN

In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100-400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N=1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA Φ(ST)=0.029, microsatellite F(ST)=0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60-180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K-52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (F(ST)) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south.


Asunto(s)
Perciformes , Migración Animal , Animales , Citocromos b/genética , ADN Mitocondrial/genética , Hawaii , Repeticiones de Microsatélite/genética , Océano Pacífico , Perciformes/clasificación , Perciformes/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...