Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670972

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia Adoptiva , Receptor de Muerte Celular Programada 1 , Receptores Quiméricos de Antígenos , Linfocitos T , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Animales , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Línea Celular Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Sistemas CRISPR-Cas , Ratones Endogámicos NOD
2.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34810235

RESUMEN

BACKGROUND: Target antigen (Ag) loss has emerged as a major cause of relapse after chimeric antigen receptor T (CART)-cell therapy. We reasoned that the combination of CART cells, with the consequent tumor debulking and release of Ags, together with an immunomodulatory agent, such as the stimulator of interferon gene ligand (STING-L) 2'3'-cyclic GMP-AMP (2'3'-cGAMP), may facilitate the activation of an endogenous response to secondary tumor Ags able to counteract this tumor escape mechanism. METHODS: Mice bearing B16-derived tumors expressing prostate-specific membrane Ag or gp75 were treated systemically with cognate CART cells followed by intratumoral injections of 2'3'-cGAMP. We studied the target Ag inmunoediting by CART cells and the effect of the CART/STING-L combination on the control of STING-L-treated and STING-L-non-treated tumors and on the endogenous antitumor T-cell response. The role of Batf3-dependent dendritic cells (DCs), stimulator of interferon gene (STING) signaling and perforin (Perf)-mediated killing in the efficacy of the combination were analyzed. RESULTS: Using an immune-competent solid tumor model, we showed that CART cells led to the emergence of tumor cells that lose the target Ag, recreating the cancer immunoediting effect of CART-cell therapy. In this setting, the CART/STING-L combination, but not the monotherapy with CART cells or STING-L, restrained tumor progression and enhanced overall survival, showing abscopal effects on distal STING-L-non-treated tumors. Interestingly, a secondary immune response against non-chimeric antigen receptor-targeted Ags (epitope spreading), as determined by major histocompatibility complex-I-tetramer staining, was fostered and its intensity correlated with the efficacy of the combination. This was consistent with the oligoclonal expansion of host T cells, as revealed by in-depth T-cell receptor repertoire analysis. Moreover, only in the combination group did the activation of endogenous T cells translate into a systemic antitumor response. Importantly, the epitope spreading and the antitumor effects of the combination were fully dependent on host STING signaling and Batf3-dependent DCs, and were partially dependent on Perf release by CART cells. Interestingly, the efficacy of the CART/STING-L treatment also depended on STING signaling in CART cells. CONCLUSIONS: Our data show that 2'3'-cGAMP is a suitable adjuvant to combine with CART-cell therapy, allowing the induction of an endogenous T-cell response that prevents the outgrowth of Ag-loss tumor variants.


Asunto(s)
Epítopos/genética , Inmunoterapia Adoptiva/métodos , Inmunoterapia/métodos , Neoplasias/genética , Escape del Tumor/genética , Animales , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA