Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancer Res ; 83(1): 141-157, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36346366

RESUMEN

Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE: CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
2.
Cancer Chemother Pharmacol ; 87(5): 689-700, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33595690

RESUMEN

PURPOSE: Trilaciclib is a first-in-class CDK4/6 inhibitor that transiently arrests hematopoietic stem and progenitor cells (HSPCs) in the G1 phase of the cell cycle to preserve them from chemotherapy-induced damage (myelopreservation). We report integrated analyses of preclinical and clinical data that informed selection of the recommended Phase II dose (RP2D) used in trilaciclib trials in extensive-stage small cell lung cancer (ES-SCLC). METHODS: A semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model developed from preclinical data guided selection of an optimal dose for G1 bone marrow arrest in a first-in-human Phase I study (G1T28-1-01). PK, PD, safety, and efficacy data from G1T28-1-01 and two Phase Ib/IIa studies (G1T28-02/-03) in ES-SCLC were analyzed to support RP2D selection. RESULTS: Model simulation of bone marrow arrest based on preclinical data predicted that a ≥ 192 mg/m2 dose would induce a 40-50% decrease in total bone marrow proliferation in humans and almost 100% cell cycle arrest of cycling HSPCs. Consistent with this model, analysis of bone marrow aspirates in healthy volunteers after trilaciclib 192 mg/m2 administration demonstrated almost 100% G1 arrest in HSPCs and 40% decrease in total bone marrow proliferation, with minimal toxicity. G1T28-02/-03 reported similar PK parameters with trilaciclib 200 mg/m2 but slightly lower exposures than expected compared with healthy volunteers; consequently, 240 and 280 mg/m2 doses were also tested to match healthy volunteer exposures. Based on PK and relevant safety data, 240 mg/m2 was selected as the RP2D, which was also favored by myelopreservation endpoints in G1T28-02/-03. CONCLUSION: Integrated PK/PD, safety, and efficacy data support 240 mg/m2 as the RP2D for trilaciclib. CLINICALTRIALS. GOV IDENTIFIERS: NCT02243150; NCT02499770; NCT02514447.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Pirimidinas/administración & dosificación , Pirroles/administración & dosificación , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Adolescente , Adulto , Ensayos Clínicos como Asunto , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Pirroles/farmacocinética , Pirroles/farmacología , Carcinoma Pulmonar de Células Pequeñas/patología , Adulto Joven
3.
Int J Cancer ; 148(10): 2557-2570, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33348420

RESUMEN

Trilaciclib is an intravenous CDK4/6 inhibitor administered prior to chemotherapy to preserve haematopoietic stem and progenitor cells and immune system function from chemotherapy-induced damage (myelopreservation). The effects of administering trilaciclib prior to carboplatin, etoposide and atezolizumab (E/P/A) were evaluated in a randomised, double-blind, placebo-controlled Phase II study in patients with newly diagnosed extensive-stage small cell lung cancer (ES-SCLC) (NCT03041311). The primary endpoints were duration of severe neutropenia (SN; defined as absolute neutrophil count <0.5 × 109 cells per L) in Cycle 1 and occurrence of SN during the treatment period. Other endpoints were prespecified to assess the effects of trilaciclib on additional measures of myelopreservation, patient-reported outcomes, antitumour efficacy and safety. Fifty-two patients received trilaciclib prior to E/P/A and 53 patients received placebo. Compared to placebo, administration of trilaciclib resulted in statistically significant decreases in the mean duration of SN in Cycle 1 (0 vs 4 days; P < .0001) and occurrence of SN (1.9% vs 49.1%; P < .0001), with additional improvements in red blood cell and platelet measures and health-related quality of life (HRQoL). Trilaciclib was well tolerated, with fewer grade ≥3 adverse events compared with placebo, primarily due to less high-grade haematological toxicity. Antitumour efficacy outcomes were comparable. Administration of trilaciclib vs placebo generated more newly expanded peripheral T-cell clones (P = .019), with significantly greater expansion among patients with an antitumour response to E/P/A (P = .002). Compared with placebo, trilaciclib administered prior to E/P/A improved patients' experience of receiving treatment for ES-SCLC, as shown by reduced myelosuppression, and improved HRQoL and safety profiles.

4.
J Immunother Cancer ; 8(2)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33004541

RESUMEN

BACKGROUND: Combination treatment with chemotherapy and immune checkpoint inhibitors (ICIs) has demonstrated meaningful clinical benefit to patients. However, chemotherapy-induced damage to the immune system can potentially diminish the efficacy of chemotherapy/ICI combinations. Trilaciclib, a highly potent, selective and reversible cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor in development to preserve hematopoietic stem and progenitor cells and immune system function during chemotherapy, has demonstrated proof of concept in recent clinical trials. Furthermore, CDK4/6 inhibition has been shown to augment T-cell activation and antitumor immunity in preclinical settings. Therefore, addition of trilaciclib has the potential to further enhance the efficacy of chemotherapy and ICI combinations. METHODS: In murine syngeneic tumor models, a schedule of 3 weekly doses of trilaciclib was combined with chemotherapy/ICI regimens to assess the effect of transient CDK4/6 inhibition on antitumor response and intratumor T-cell proliferation and function. Peripheral T-cell status was also analyzed in patients with small cell lung cancer (SCLC) treated with chemotherapy with or without trilaciclib to gain insights into the effect of transient exposure of trilaciclib on T-cell activation. RESULTS: Preclinically, the addition of trilaciclib to chemotherapy/ICI regimens enhanced antitumor response and overall survival compared with chemotherapy and ICI combinations alone. This effect is associated with the modulation of the proliferation and composition of T-cell subsets in the tumor microenvironment and increased effector function. Transient exposure of trilaciclib in patients with SCLC during chemotherapy treatment both preserved and increased peripheral lymphocyte counts and enhanced T-cell activation, suggesting that trilaciclib not only preserved but also enhanced immune system function. CONCLUSIONS: Transient CDK4/6 inhibition by trilaciclib was sufficient to enhance and prolong the duration of the antitumor response by chemotherapy/ICI combinations, suggesting a role for the transient cell cycle arrest of tumor immune infiltrates in remodeling the tumor microenvironment. These results provide a rationale for combining trilaciclib with chemotherapy/ICI regimens to improve antitumor efficacy in patients with cancer.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Activación de Linfocitos/efectos de los fármacos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/patología , Ratones , Carcinoma Pulmonar de Células Pequeñas/patología
5.
Breast Cancer Res Treat ; 180(3): 635-646, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32130619

RESUMEN

PURPOSE: The combination of targeting the CDK4/6 and estrogen receptor (ER) signaling pathways with palbociclib and fulvestrant is a proven therapeutic strategy for the treatment of ER-positive breast cancer. However, the poor physicochemical properties of fulvestrant require monthly intramuscular injections to patients, which limit the pharmacokinetic and pharmacodynamic activity of the compound. Therefore, an orally available compound that more rapidly reaches steady state may lead to a better clinical response in patients. Here, we report the identification of G1T48, a novel orally bioavailable, non-steroidal small molecule antagonist of ER. METHODS: The pharmacological effects and the antineoplastic mechanism of action of G1T48 on tumors was evaluated using human breast cancer cells (in vitro) and xenograft efficacy models (in vivo). RESULTS: G1T48 is a potent and efficacious inhibitor of estrogen-mediated transcription and proliferation in ER-positive breast cancer cells, similar to the pure antiestrogen fulvestrant. In addition, G1T48 can effectively suppress ER activity in multiple models of endocrine therapy resistance including those harboring ER mutations and growth factor activation. In vivo, G1T48 has robust antitumor activity in a model of estrogen-dependent breast cancer (MCF7) and significantly inhibited the growth of tamoxifen-resistant (TamR), long-term estrogen-deprived (LTED) and patient-derived xenograft tumors with an increased response being observed with the combination of G1T48 and the CDK4/6 inhibitor lerociclib. CONCLUSIONS: These data show that G1T48 has the potential to be an efficacious oral antineoplastic agent in ER-positive breast cancer.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Anticuerpos Anti-VIH/farmacología , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Antagonistas de Estrógenos/farmacología , Femenino , Humanos , Ratones , Neoplasias Hormono-Dependientes/metabolismo , Neoplasias Hormono-Dependientes/patología , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Proc Natl Acad Sci U S A ; 116(7): 2603-2611, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30683717

RESUMEN

The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by "knocking-in" a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16INK4a locus. We used this allele (p16tdTom ) for the enumeration, isolation, and characterization of individual p16INK4a -expressing cells (tdTom+). The half-life of the knocked-in transcript was shorter than that of the endogenous p16INK4a mRNA, and therefore reporter expression better correlated with p16INK4a promoter activation than p16INK4a transcript abundance. The frequency of tdTom+ cells increased with serial passage in cultured murine embryo fibroblasts from p16tdTom/+ mice. In adult mice, tdTom+ cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16INK4a and found that tdTom+ macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated ß-galactosidase (SA-ß-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence.


Asunto(s)
Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regiones Promotoras Genéticas , Animales , Proliferación Celular , Activación Enzimática , Fibroblastos/metabolismo , Semivida , Humanos , Ratones , Fenotipo , ARN Mensajero/genética , beta-Galactosidasa/metabolismo
7.
Cancer Discov ; 8(2): 216-233, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29101163

RESUMEN

Immune checkpoint blockade, exemplified by antibodies targeting the PD-1 receptor, can induce durable tumor regressions in some patients. To enhance the efficacy of existing immunotherapies, we screened for small molecules capable of increasing the activity of T cells suppressed by PD-1. Here, we show that short-term exposure to small-molecule inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) significantly enhances T-cell activation, contributing to antitumor effects in vivo, due in part to the derepression of NFAT family proteins and their target genes, critical regulators of T-cell function. Although CDK4/6 inhibitors decrease T-cell proliferation, they increase tumor infiltration and activation of effector T cells. Moreover, CDK4/6 inhibition augments the response to PD-1 blockade in a novel ex vivo organotypic tumor spheroid culture system and in multiple in vivo murine syngeneic models, thereby providing a rationale for combining CDK4/6 inhibitors and immunotherapies.Significance: Our results define previously unrecognized immunomodulatory functions of CDK4/6 and suggest that combining CDK4/6 inhibitors with immune checkpoint blockade may increase treatment efficacy in patients. Furthermore, our study highlights the critical importance of identifying complementary strategies to improve the efficacy of immunotherapy for patients with cancer. Cancer Discov; 8(2); 216-33. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Jenkins et al., p. 196This article is highlighted in the In This Issue feature, p. 127.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Animales , Antineoplásicos/farmacología , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 8(26): 42343-42358, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28418845

RESUMEN

Inhibition of the p16INK4a/cyclin D/CDK4/6/RB pathway is an effective therapeutic strategy for the treatment of estrogen receptor positive (ER+) breast cancer. Although efficacious, current treatment regimens require a dosing holiday due to severe neutropenia potentially leading to an increased risk of infections, as well as tumor regrowth and emergence of drug resistance. Therefore, a next generation CDK4/6 inhibitor that can inhibit proliferation of CDK4/6-dependent tumors while minimizing neutropenia could reduce both the need for treatment holidays and the risk of inducing drug resistance.Here, we describe the preclinical characterization and development of G1T38; a novel, potent, selective, and orally bioavailable CDK4/6 inhibitor. In vitro, G1T38 decreased RB1 (RB) phosphorylation, caused a precise G1 arrest, and inhibited cell proliferation in a variety of CDK4/6-dependent tumorigenic cell lines including breast, melanoma, leukemia, and lymphoma cells. In vivo, G1T38 treatment led to equivalent or improved tumor efficacy compared to the first-in-class CDK4/6 inhibitor, palbociclib, in an ER+ breast cancer xenograft model. Furthermore, G1T38 accumulated in mouse xenograft tumors but not plasma, resulting in less inhibition of mouse myeloid progenitors than after palbociclib treatment. In larger mammals, this difference in pharmacokinetics allowed for 28 day continuous dosing of G1T38 in beagle dogs without producing severe neutropenia. These data demonstrate G1T38 has unique pharmacokinetic and pharmacodynamic properties, which result in high efficacy against CDK4/6 dependent tumors while minimizing the undesirable on-target bone marrow activity, thus potentially allowing G1T38 to be used as a continuous, daily oral antineoplastic agent.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Piridinas/farmacología , Receptores de Estrógenos/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Sci Transl Med ; 9(387)2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446688

RESUMEN

Conventional cytotoxic chemotherapy is highly effective in certain cancers but causes dose-limiting damage to normal proliferating cells, especially hematopoietic stem and progenitor cells (HSPCs). Serial exposure to cytotoxics causes a long-term hematopoietic compromise ("exhaustion"), which limits the use of chemotherapy and success of cancer therapy. We show that the coadministration of G1T28 (trilaciclib), which is a small-molecule inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), contemporaneously with cytotoxic chemotherapy protects murine hematopoietic stem cells (HSCs) from chemotherapy-induced exhaustion in a serial 5-fluorouracil treatment model. Consistent with a cell-intrinsic effect, we show directly preserved HSC function resulting in a more rapid recovery of peripheral blood counts, enhanced serial transplantation capacity, and reduced myeloid skewing. When administered to healthy human volunteers, G1T28 demonstrated excellent in vivo pharmacology and transiently inhibited bone marrow (BM) HSPC proliferation. These findings suggest that the combination of CDK4/6 inhibitors with cytotoxic chemotherapy should provide a means to attenuate therapy-induced BM exhaustion in patients with cancer.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Femenino , Fluorouracilo/farmacología , Voluntarios Sanos , Células Madre Hematopoyéticas/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Mol Cancer Ther ; 15(5): 783-93, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26826116

RESUMEN

Chemotherapy-induced myelosuppression continues to represent the major dose-limiting toxicity of cytotoxic chemotherapy, which can be manifested as neutropenia, lymphopenia, anemia, and thrombocytopenia. As such, myelosuppression is the source of many of the adverse side effects of cancer treatment including infection, sepsis, bleeding, and fatigue, thus resulting in the need for hospitalizations, hematopoietic growth factor support, and transfusions (red blood cells and/or platelets). Moreover, clinical concerns raised by myelosuppression commonly lead to chemotherapy dose reductions, therefore limiting therapeutic dose intensity, and reducing the antitumor effectiveness of the treatment. Currently, the only course of treatment for myelosuppression is growth factor support which is suboptimal. These treatments are lineage specific, do not protect the bone marrow from the chemotherapy-inducing cytotoxic effects, and the safety and toxicity of each agent is extremely specific. Here, we describe the preclinical development of G1T28, a novel potent and selective CDK4/6 inhibitor that transiently and reversibly regulates the proliferation of murine and canine bone marrow hematopoietic stem and progenitor cells and provides multilineage protection from the hematologic toxicity of chemotherapy. Furthermore, G1T28 does not decrease the efficacy of cytotoxic chemotherapy on RB1-deficient tumors. G1T28 is currently in clinical development for the reduction of chemotherapy-induced myelosuppression in first- and second-line treatment of small-cell lung cancer. Mol Cancer Ther; 15(5); 783-93. ©2016 AACR.


Asunto(s)
Antineoplásicos/efectos adversos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Mielopoyesis/efectos de los fármacos , Sustancias Protectoras/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN , Modelos Animales de Enfermedad , Perros , Evaluación Preclínica de Medicamentos , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Ratones , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Sustancias Protectoras/química , Inhibidores de Proteínas Quinasas/química , Proteína de Retinoblastoma/deficiencia
11.
Trends Mol Med ; 20(7): 375-84, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24880613

RESUMEN

Mammalian aging is complex and incompletely understood. Although significant effort has been spent addressing the genetics or, more recently, the pharmacology of aging, the toxicology of aging has been relatively understudied. Just as an understanding of 'carcinogens' has proven crucial to modern cancer biology, an understanding of environmental toxicants that accelerate aging ('gerontogens') will inform gerontology. In this review, we discuss the evidence for the existence of mammalian gerontogens, as well as describe the biomarkers needed to measure the age-promoting activity of a given toxicant. We focus on the effects of putative gerontogens on the in vivo accumulation of senescent cells, a characteristic feature of aging that has a causal role in some age-associated phenotypes.


Asunto(s)
Envejecimiento/patología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Contaminantes Ambientales/efectos adversos , Animales , Humanos , Fenotipo
12.
J Clin Invest ; 124(1): 169-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24334456

RESUMEN

While murine-based systems to identify cancer-promoting agents (carcinogens) are established, models to identify compounds that promote aging (gerontogens) have not been described. For this purpose, we exploited the transcription of p16INK4a, which rises dynamically with aging and correlates with age-associated disease. Activation of p16INK4a was visualized in vivo using a murine strain that harbors a knockin of the luciferase gene into the Cdkn2a locus (p16LUC mice). We exposed p16LUC mice to candidate gerontogens, including arsenic, high-fat diet, UV light, and cigarette smoke and serially imaged animals to monitor senescence induction. We show that exposure to a high-fat diet did not accelerate p16INK4a expression, whereas arsenic modestly augmented, and cigarette smoke and UV light potently augmented, activation of p16INK4a-mediated senescence. This work provides a toxicological platform to study mammalian aging and suggests agents that directly damage DNA promote molecular aging.


Asunto(s)
Envejecimiento , Arsénico/toxicidad , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Mutágenos/toxicidad , Humo/efectos adversos , Rayos Ultravioleta/efectos adversos , Animales , Biomarcadores/metabolismo , Senescencia Celular , Daño del ADN , Dieta Alta en Grasa/efectos adversos , Exposición a Riesgos Ambientales , Genes Reporteros , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/patología , Ratones , Ratones Transgénicos , Mutágenos/efectos adversos , Regiones Promotoras Genéticas , Enfermedades de la Piel/etiología , Enfermedades de la Piel/patología , Nicotiana , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/efectos de la radiación , Imagen de Cuerpo Entero
13.
Cell ; 152(1-2): 340-51, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332765

RESUMEN

Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16(LUC) was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16(INK4a) was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16(INK4a) activation is a characteristic of all emerging cancers, making the p16(LUC) allele a sensitive, unbiased reporter of neoplastic transformation.


Asunto(s)
Envejecimiento/genética , Biomarcadores , Transformación Celular Neoplásica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Luciferasas/genética , Neoplasias/genética , Animales , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Técnicas de Sustitución del Gen , Ratones , Neoplasias/fisiopatología , Heridas y Lesiones/genética
14.
RNA ; 19(2): 141-57, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23249747

RESUMEN

Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a "backsplice") and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression.


Asunto(s)
Elementos Alu/genética , Regulación de la Expresión Génica/genética , Empalme del ARN/genética , ARN/genética , Trans-Empalme/genética , Animales , Secuencia de Bases , Células Cultivadas , Biología Computacional , Secuencia Conservada , Evolución Molecular , Exones/genética , Exorribonucleasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Motivos de Nucleótidos , Fosfotransferasas/genética , Estabilidad del ARN , ARN Circular , ARN Interferente Pequeño , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...