Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
medRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746173

RESUMEN

Current techniques to image the microstructure of the heart with diffusion tensor MRI (DTI) are highly under-resolved. We present a technique to improve the spatial resolution of cardiac DTI by almost 10-fold and leverage this to measure local gradients in cardiomyocyte alignment or helix angle (HA). We further introduce a phenomapping approach based on voxel-wise hierarchical clustering of these gradients to identify distinct microstructural microenvironments in the heart. Initial development was performed in healthy volunteers (n=8). Thereader, subjects with severe but well-compensated aortic stenosis (AS, n=10) were compared to age-matched controls (CTL, n=10). Radial HA gradient was significantly reduced in AS (8.0±0.8°/mm vs. 10.2±1.8°/mm, p=0.001) but the other HA gradients did not change significantly. Four distinct microstructural clusters could be idenJfied in both the CTL and AS subjects and did not differ significantly in their properties or distribution. Despite marked hypertrophy, our data suggest that the myocardium in well-compensated AS can maintain its microstructural coherence. The described phenomapping approach can be used to characterize microstructural plasticity and perturbation in any organ system and disease.

3.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546963

RESUMEN

In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts. Here, a library of fluorescent probes to quantify collagen oxidation, the first step in collagen cross-link (CCL) formation, was developed. Myocardial injury in mice or zebrafish resulted in similar dynamics of collagen oxidation in the myocardium in the first month after injury. However, during this time, mature CCLs such as pyridinoline and deoxypyridinoline developed in the murine infarcts but not in the zebrafish hearts. High levels of newly oxidized collagen were still seen in murine scars with mature CCLs. These data suggest that fibrogenesis remains dynamic, even in mature scars, and that the absence of mature CCLs in zebrafish hearts may facilitate their ability to regenerate.

4.
Magn Reson Med ; 90(4): 1594-1609, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37288580

RESUMEN

PURPOSE: Modern high-amplitude gradient systems can be limited by the International Electrotechnical Commission 60601-2-33 cardiac stimulation (CS) limit, which was set in a conservative manner based on electrode experiments and E-field simulations in uniform ellipsoidal body models. Here, we show that coupled electromagnetic-electrophysiological modeling in detailed body and heart models can predict CS thresholds, suggesting that such modeling might lead to more detailed threshold estimates in humans. Specifically, we compare measured and predicted CS thresholds in eight pigs. METHODS: We created individualized porcine body models using MRI (Dixon for the whole body, CINE for the heart) that replicate the anatomy and posture of the animals used in our previous experimental CS study. We model the electric fields induced along cardiac Purkinje and ventricular muscle fibers and predict the electrophysiological response of these fibers, yielding CS threshold predictions in absolute units for each animal. Additionally, we assess the total modeling uncertainty through a variability analysis of the 25 main model parameters. RESULTS: Predicted and experimental CS thresholds agree within 19% on average (normalized RMS error), which is smaller than the 27% modeling uncertainty. No significant difference was found between the modeling predictions and experiments (p < 0.05, paired t-test). CONCLUSION: Predicted thresholds matched the experimental data within the modeling uncertainty, supporting the model validity. We believe that our modeling approach can be applied to study CS thresholds in humans for various gradient coils, body shapes/postures, and waveforms, which is difficult to do experimentally.


Asunto(s)
Fenómenos Electromagnéticos , Corazón , Humanos , Porcinos , Animales , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Ventrículos Cardíacos , Electricidad
6.
PLoS One ; 17(12): e0278308, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454872

RESUMEN

In young adults, overweight and hypertension possibly already trigger cardiac remodeling as seen in mature adults, potentially overlapping non-ischemic cardiomyopathy findings. To this end, in young overweight and hypertensive adults, we aimed to investigate changes in left ventricular mass (LVM) and cardiac volumes, and the impact of different body scales for indexation. We also aimed to explore the presence of myocardial fibrosis, fat and edema, and changes in cellular mass with extracellular volume (ECV), T1 and T2 tissue characteristics. We prospectively recruited 126 asymptomatic subjects (51% male) aged 27-41 years for 3T cardiac magnetic resonance imaging: 40 controls, 40 overweight, 17 hypertensive and 29 hypertensive overweight. Myocyte mass was calculated as (100%-ECV) * height2.7-indexed LVM. Absolute LVM was significantly increased in overweight, hypertensive and hypertensive overweight groups (104 ± 23, 109 ± 27, 112 ± 26 g) versus controls (87 ± 21 g), with similar volumes. Body surface area (BSA) indexation resulted in LVM normalization in overweights (48 ± 8 g/m2) versus controls (47 ± 9 g/m2), but not in hypertensives (55 ± 9 g/m2) and hypertensive overweights (52 ± 9 g/m2). BSA-indexation overly decreased volumes in overweight versus normal-weight (LV end-diastolic volume; 80 ± 14 versus 92 ± 13 ml/m2), where height2.7-indexation did not. All risk groups had lower ECV (23 ± 2%, 23 ± 2%, 23 ± 3%) than controls (25 ± 2%) (P = 0.006, P = 0.113, P = 0.039), indicating increased myocyte mass (16.9 ± 2.7, 16.5 ± 2.3, 18.1 ± 3.5 versus 14.0 ± 2.9 g/m2.7). Native T1 values were similar. Lower T2 values in the hypertensive overweight group related to heart rate. In conclusion, BSA-indexation masks hypertrophy and causes volume overcorrection in overweight subjects compared to controls, height2.7-indexation therefore seems advisable.


Asunto(s)
Hipertensión , Sobrepeso , Adulto , Humanos , Masculino , Adulto Joven , Femenino , Sobrepeso/complicaciones , Sobrepeso/diagnóstico por imagen , Hipertensión/complicaciones , Hipertensión/diagnóstico por imagen , Imagen por Resonancia Magnética , Morbilidad , Corazón
7.
Nat Cardiovasc Res ; 1(7): 649-664, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36034743

RESUMEN

Sudden cardiac death, arising from abnormal electrical conduction, occurs frequently in patients with coronary heart disease. Myocardial ischemia simultaneously induces arrhythmia and massive myocardial leukocyte changes. In this study, we optimized a mouse model in which hypokalemia combined with myocardial infarction triggered spontaneous ventricular tachycardia in ambulatory mice, and we showed that major leukocyte subsets have opposing effects on cardiac conduction. Neutrophils increased ventricular tachycardia via lipocalin-2 in mice, whereas neutrophilia associated with ventricular tachycardia in patients. In contrast, macrophages protected against arrhythmia. Depleting recruited macrophages in Ccr2 -/- mice or all macrophage subsets with Csf1 receptor inhibition increased both ventricular tachycardia and fibrillation. Higher arrhythmia burden and mortality in Cd36 -/- and Mertk -/- mice, viewed together with reduced mitochondrial integrity and accelerated cardiomyocyte death in the absence of macrophages, indicated that receptor-mediated phagocytosis protects against lethal electrical storm. Thus, modulation of leukocyte function provides a potential therapeutic pathway for reducing the risk of sudden cardiac death.

8.
Magn Reson Med ; 88(5): 2242-2258, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35906903

RESUMEN

PURPOSE: Powerful MRI gradient systems can surpass the International Electrotechnical Commission (IEC) 60601-2-33 limit for cardiac stimulation (CS), which was determined by simple electromagnetic simulations and electrode stimulation experiments. Only a few canine studies measured magnetically induced CS thresholds in vivo and extrapolating them to human safety limits can be challenging. METHODS: We measured cardiac magnetostimulation thresholds in 10 healthy, anesthetized pigs using capacitors discharged into a flat spiral coil to produce damped sinusoidal waveforms with effective stimulus duration ts,eff  = 0.45 ms. Electrocardiography (ECG), blood pressure, and peripheral oximetry signals were recorded to determine threshold coil currents yielding cardiac capture. Dixon and CINE MR volumes from each animal were segmented to generate porcine-specific electromagnetic models to calculate dB/dt and E-field values in the porcine heart at threshold. For comparison, we also simulated maximum dB/dt and E-field values created by three MRI gradient systems in the heart of a human body model. RESULTS: The average dB/dt threshold estimated in the porcine heart was 1.66 ± 0.23 kT/s, which is 11-fold greater than the IEC dB/dt limit at ts,eff  = 0.45 ms, and 31-fold greater than the maximum value created by the investigated MRI gradients in the human heart. The average E-field threshold estimated in the porcine heart was 92.9 ± 13.5 V/m, which is 6-fold greater than the IEC E-field limit at ts,eff  = 0.45 ms and 37-fold greater than the maximum gradient-induced E-field in the human heart. CONCLUSION: This first measurement of cardiac magnetostimulation thresholds in pigs indicates that the IEC cardiac safety limit is conservative for the investigated stimulus duration (ts,eff  = 0.45 ms).


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Animales , Perros , Electrocardiografía , Corazón/diagnóstico por imagen , Corazón/fisiología , Humanos , Porcinos
9.
Nat Biomed Eng ; 6(9): 1045-1056, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817962

RESUMEN

Autophagy-the lysosomal degradation of cytoplasmic components via their sequestration into double-membraned autophagosomes-has not been detected non-invasively. Here we show that the flux of autophagosomes can be measured via magnetic resonance imaging or serial near-infrared fluorescence imaging of intravenously injected iron oxide nanoparticles decorated with cathepsin-cleavable arginine-rich peptides functionalized with the near-infrared fluorochrome Cy5.5 (the peptides facilitate the uptake of the nanoparticles by early autophagosomes, and are then cleaved by cathepsins in lysosomes). In the heart tissue of live mice, the nanoparticles enabled quantitative measurements of changes in autophagic flux, upregulated genetically, by ischaemia-reperfusion injury or via starvation, or inhibited via the administration of a chemotherapeutic or the antibiotic bafilomycin. In mice receiving doxorubicin, pre-starvation improved cardiac function and overall survival, suggesting that bursts of increased autophagic flux may have cardioprotective effects during chemotherapy. Autophagy-detecting nanoparticle probes may facilitate the further understanding of the roles of autophagy in disease.


Asunto(s)
Autofagia , Colorantes Fluorescentes , Nanopartículas , Espectroscopía Infrarroja Corta , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Arginina/química , Autofagia/efectos de los fármacos , Carbocianinas/química , Catepsinas/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Colorantes Fluorescentes/química , Macrólidos/administración & dosificación , Macrólidos/farmacología , Imagen por Resonancia Magnética/métodos , Ratones , Nanopartículas/química , Espectroscopía Infrarroja Corta/métodos
10.
Circ Res ; 130(12): 1851-1868, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679370

RESUMEN

Major advances in biomedical imaging have occurred over the last 2 decades and now allow many physiological, cellular, and molecular processes to be imaged noninvasively in small animal models of cardiovascular disease. Many of these techniques can be also used in humans, providing pathophysiological context and helping to define the clinical relevance of the model. Ultrasound remains the most widely used approach, and dedicated high-frequency systems can obtain extremely detailed images in mice. Likewise, dedicated small animal tomographic systems have been developed for magnetic resonance, positron emission tomography, fluorescence imaging, and computed tomography in mice. In this article, we review the use of ultrasound and positron emission tomography in small animal models, as well as emerging contrast mechanisms in magnetic resonance such as diffusion tensor imaging, hyperpolarized magnetic resonance, chemical exchange saturation transfer imaging, magnetic resonance elastography and strain, arterial spin labeling, and molecular imaging.


Asunto(s)
Enfermedades Cardiovasculares , Imagen de Difusión Tensora , Animales , Enfermedades Cardiovasculares/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ratones , Modelos Teóricos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X
11.
Front Cardiovasc Med ; 9: 840790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35274012

RESUMEN

Background: Young adult populations with the sedentary lifestyle-related risk factors overweight, hypertension, and type 2 diabetes (T2D) are growing, and associated cardiac alterations could overlap early findings in non-ischemic cardiomyopathy on cardiovascular MRI. We aimed to investigate cardiac morphology, function, and tissue characteristics for these cardiovascular risk factors. Methods: Non-athletic non-smoking asymptomatic adults aged 18-45 years were prospectively recruited and underwent 3Tesla cardiac MRI. Multivariate linear regression was performed to investigate independent associations of risk factor-related parameters with cardiac MRI values. Results: We included 311 adults (age, 32 ± 7 years; men, 49%). Of them, 220 subjects had one or multiple risk factors, while 91 subjects were free of risk factors. For overweight, increased body mass index (per SD = 5.3 kg/m2) was associated with increased left ventricular (LV) mass (+7.3 g), biventricular higher end-diastolic (LV, +8.6 ml), and stroke volumes (SV; +5.0 ml), higher native T1 (+7.3 ms), and lower extracellular volume (ECV, -0.38%), whereas the higher waist-hip ratio was associated with lower biventricular volumes. Regarding hypertension, increased systolic blood pressure (per SD = 14 mmHg) was associated with increased LV mass (+6.9 g), higher LV ejection fraction (EF; +1.0%), and lower ECV (-0.48%), whereas increased diastolic blood pressure was associated with lower LV EF. In T2D, increased HbA1c (per SD = 9.0 mmol/mol) was associated with increased LV mass (+2.2 g), higher right ventricular end-diastolic volume (+3.2 ml), and higher ECV (+0.27%). Increased heart rate was linked with decreased LV mass, lower biventricular volumes, and lower T2 values. Conclusions: Young asymptomatic adults with overweight, hypertension, and T2D show subclinical alterations in cardiac morphology, function, and tissue characteristics. These alterations should be considered in cardiac MRI-based clinical decision making.

12.
Magn Reson Med ; 87(1): 474-487, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390021

RESUMEN

PURPOSE: For in vivo cardiac DTI, breathing motion and B0 field inhomogeneities produce misalignment and geometric distortion in diffusion-weighted (DW) images acquired with conventional single-shot EPI. We propose using a dimensionality reduction method to retrospectively estimate the respiratory phase of DW images and facilitate both distortion correction (DisCo) and motion compensation. METHODS: Free-breathing electrocardiogram-triggered whole left-ventricular cardiac DTI using a second-order motion-compensated spin echo EPI sequence and alternating directionality of phase encoding blips was performed on 11 healthy volunteers. The respiratory phase of each DW image was estimated after projecting the DW images into a 2D space with Laplacian eigenmaps. DisCo and motion compensation were applied to the respiratory sorted DW images. The results were compared against conventional breath-held T2 half-Fourier single shot turbo spin echo. Cardiac DTI parameters including fractional anisotropy, mean diffusivity, and helix angle transmurality were compared with and without DisCo. RESULTS: The left-ventricular geometries after DisCo and motion compensation resulted in significantly improved alignment of DW images with T2 reference. DisCo reduced the distance between the left-ventricular contours by 13.2% ± 19.2%, P < .05 (2.0 ± 0.4 for DisCo and 2.4 ± 0.5 mm for uncorrected). DisCo DTI parameter maps yielded no significant differences (mean diffusivity: 1.55 ± 0.13 × 10-3 mm2 /s and 1.53 ± 0.13 × 10-3 mm2 /s, P = .09; fractional anisotropy: 0.375 ± 0.041 and 0.379 ± 0.045, P = .11; helix angle transmurality: 1.00% ± 0.10°/% and 0.99% ± 0.12°/%, P = .44), although the orientation of individual tensors differed. CONCLUSION: Retrospective respiratory phase estimation with LE-based DisCo and motion compensation in free-breathing cardiac DTI resulting in significantly reduced geometric distortion and improved alignment within and across slices.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Imagen Eco-Planar , Humanos , Movimiento (Física) , Reproducibilidad de los Resultados , Estudios Retrospectivos
13.
NMR Biomed ; 35(6): e4685, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34967060

RESUMEN

Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3  mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5  mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.


Asunto(s)
Imagen de Difusión Tensora , Corazón , Anisotropía , Imagen de Difusión Tensora/métodos , Corazón/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados
14.
JACC Cardiovasc Imaging ; 15(3): 504-515, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34656469

RESUMEN

OBJECTIVES: The authors present a novel technique to detect and characterize LAA thrombus in humans using combined positron emission tomography (PET)/cardiac magnetic resonance (CMR) of a fibrin-binding radiotracer, [64Cu]FBP8. BACKGROUND: The detection of thrombus in the left atrial appendage (LAA) is vital in the prevention of stroke and is currently performed using transesophageal echocardiography (TEE). METHODS: The metabolism and pharmacokinetics of [64Cu]FBP8 were studied in 8 healthy volunteers. Patients with atrial fibrillation and recent TEEs of the LAA (positive n = 12, negative n = 12) were injected with [64Cu]FBP8 and imaged with PET/CMR, including mapping the longitudinal magnetic relaxation time (T1) in the LAA. RESULTS: [64Cu]FBP8 was stable to metabolism and was rapidly eliminated. The maximum standardized uptake value (SUVMax) in the LAA was significantly higher in the TEE-positive than TEE-negative subjects (median of 4.0 [interquartile range (IQR): 3.0-6.0] vs 2.3 [IQR: 2.1-2.5]; P < 0.001), with an area under the receiver-operating characteristic curve of 0.97. An SUVMax threshold of 2.6 provided a sensitivity of 100% and specificity of 84%. The minimum T1 (T1Min) in the LAA was 970 ms (IQR: 780-1,080 ms) vs 1,380 ms (IQR: 1,120-1,620 ms) (TEE positive vs TEE negative; P < 0.05), with some overlap between the groups. Logistic regression using SUVMax and T1Min allowed all TEE-positive and TEE-negative subjects to be classified with 100% accuracy. CONCLUSIONS: PET/CMR of [64Cu]FBP8 is able to detect acute as well as older platelet-poor thrombi with excellent accuracy. Furthermore, the integrated PET/CMR approach provides useful information on the biological properties of thrombus such as fibrin and methemoglobin content. (Imaging of LAA Thrombosis; NCT03830320).


Asunto(s)
Apéndice Atrial , Trombosis , Fibrina , Humanos , Espectroscopía de Resonancia Magnética , Tomografía de Emisión de Positrones , Valor Predictivo de las Pruebas , Trombosis/diagnóstico por imagen , Trombosis/patología , Tomografía Computarizada por Rayos X/métodos
15.
Radiol Cardiothorac Imaging ; 3(3): e200580, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34250491

RESUMEN

PURPOSE: To develop and assess a residual deep learning algorithm to accelerate in vivo cardiac diffusion-tensor MRI (DT-MRI) by reducing the number of averages while preserving image quality and DT-MRI parameters. MATERIALS AND METHODS: In this prospective study, a denoising convolutional neural network (DnCNN) for DT-MRI was developed; a total of 26 participants, including 20 without obesity (body mass index [BMI] < 30 kg/m2; mean age, 28 years ± 3 [standard deviation]; 11 women) and six with obesity (BMI ≥ 30 kg/m2; mean age, 48 years ± 11; five women), were recruited from June 19, 2019, to July 29, 2020. DT-MRI data were constructed at four averages (4Av), two averages (2Av), and one average (1Av) without and with the application of the DnCNN (4AvDnCNN, 2AvDnCNN, 1AvDnCNN). All data were compared against the reference DT-MRI data constructed at eight averages (8Av). Image quality, characterized by using the signal-to-noise ratio (SNR) and structural similarity index (SSIM), and the DT-MRI parameters of mean diffusivity (MD), fractional anisotropy (FA), and helix angle transmurality (HAT) were quantified. RESULTS: No differences were found in image quality or DT-MRI parameters between the accelerated 4AvDnCNN DT-MRI and the reference 8Av DT-MRI data for the SNR (29.1 ± 2.7 vs 30.5 ± 2.9), SSIM (0.97 ± 0.01), MD (1.3 µm2/msec ± 0.1 vs 1.31 µm2/msec ± 0.11), FA (0.32 ± 0.05 vs 0.30 ± 0.04), or HAT (1.10°/% ± 0.13 vs 1.11°/% ± 0.09). The relationship of a higher MD and lower FA and HAT in individuals with obesity compared with individuals without obesity in reference 8Av DT-MRI measurements was retained in 4AvDnCNN and 2AvDnCNN DT-MRI measurements but was not retained in 4Av or 2Av DT-MRI measurements. CONCLUSION: Cardiac DT-MRI can be performed at an at least twofold-accelerated rate by using DnCNN to preserve image quality and DT-MRI parameter quantification.Keywords: Adults, Cardiac, Obesity, Technology Assessment, MR-Diffusion Tensor Imaging, Heart, Tissue CharacterizationSupplemental material is available for this article.© RSNA, 2021.

16.
Magn Reson Med ; 86(4): 2276-2289, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34028882

RESUMEN

PURPOSE: Three 64-channel cardiac coils with different detector array configurations were designed and constructed to evaluate acceleration capabilities in simultaneous multislice (SMS) imaging for 3T cardiac MRI. METHODS: Three 64-channel coil array configurations obtained from a simulation-guided design approach were constructed and systematically evaluated regarding their encoding capabilities for accelerated SMS cardiac acquisitions at 3T. Array configuration AUni-sized consists of uniformly distributed equally sized loops in an overlapped arrangement, BGapped uses a gapped array design with symmetrically distributed equally sized loops, and CDense has non-uniform loop density and size, where smaller elements were centered over the heart and larger elements were placed surrounding the target region. To isolate the anatomic variation from differences in the coil configurations, all three array coils were built with identical semi-adjustable housing segments. The arrays' performance was compared using bench-level measurements and imaging performance tests, including signal-to-noise ratio (SNR) maps, array element noise correlation, and SMS acceleration capabilities. Additionally, all cardiac array coils were evaluated on a healthy volunteer. RESULTS: The array configuration CDense with the non-uniformly distributed loop density showed the best overall cardiac imaging performance in both SNR and SMS encoding power, when compared to the other constructed arrays. The diffusion weighted cardiac acquisitions on a healthy volunteer support the favorable accelerated SNR performance of this array configuration. CONCLUSION: Our results indicate that optimized highly parallel cardiac arrays, such as the 64-channel coil with a non-uniform loop size and density improve highly accelerated SMS cardiac MRI in comparison to symmetrically distributed loop array designs.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Simulación por Computador , Diseño de Equipo , Voluntarios Sanos , Corazón/diagnóstico por imagen , Humanos , Relación Señal-Ruido
18.
Magn Reson Med ; 85(5): 2634-2648, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33252140

RESUMEN

PURPOSE: We aimed to develop a novel free-breathing cardiac diffusion tensor MRI (DT-MRI) approach, M2-MT-MOCO, capable of whole left ventricular coverage that leverages second-order motion compensation (M2) diffusion encoding and multitasking (MT) framework to efficiently correct for respiratory motion (MOCO). METHODS: Imaging was performed in 16 healthy volunteers and 3 heart failure patients with symptomatic dyspnea. The healthy volunteers were scanned to compare the accuracy of interleaved multislice coverage of the entire left ventricle with a single-slice acquisition and the accuracy of the free-breathing conventional MOCO and MT-MOCO approaches with reference breath-hold DT-MRI. Mean diffusivity (MD), fractional anisotropy (FA), helix angle transmurality (HAT), and intrascan repeatability were quantified and compared. RESULTS: In all subjects, free-breathing M2-MT-MOCO DT-MRI yielded DWI of the entire left ventricle without bulk motion-induced signal loss. No significant differences were seen in the global values of MD, FA, and HAT in the multislice and single-slice acquisitions. Furthermore, global quantification of MD, FA, and HAT were also not significantly different between the MT-MOCO and breath-hold, whereas conventional MOCO yielded significant differences in MD, FA, and HAT with MT-MOCO and FA with breath-hold. In heart failure patients, M2-MT-MOCO DT-MRI was feasible yielding higher MD, lower FA, and lower HAT compared with healthy volunteers. Substantial agreement was found between repeated scans across all subjects for MT-MOCO. CONCLUSION: M2-MT-MOCO enables free-breathing DT-MRI of the entire left ventricle in 10 min, while preserving quantification of myocardial microstructure compared to breath-held and single-slice acquisitions and is feasible in heart failure patients.


Asunto(s)
Imagen de Difusión Tensora , Ventrículos Cardíacos , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Movimiento (Física) , Miocardio , Reproducibilidad de los Resultados , Respiración
19.
Heart Fail Clin ; 17(1): 85-101, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33220889

RESUMEN

Advances in technology have made it possible to image the microstructure of the heart with diffusion-weighted magnetic resonance. The technique provides unique insights into the cellular architecture of the myocardium and how this is perturbed in a range of disease contexts. In this review, the physical basis of diffusion MRI and the challenges of implementing it in the beating heart are discussed. Cutting edge acquisition and analysis techniques, as well as the results of initial clinical studies, are reported.


Asunto(s)
Imagen por Resonancia Cinemagnética/métodos , Miocardio/patología , Humanos , Espectroscopía de Resonancia Magnética
20.
Sci Rep ; 10(1): 11209, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641756

RESUMEN

Multiplexed imaging is essential for the evaluation of substrate utilization in metabolically active organs, such as the heart and brown adipose tissue (BAT), where substrate preference changes in pathophysiologic states. Optical imaging provides a useful platform because of its low cost, high throughput and intrinsic ability to perform composite readouts. However, the paucity of probes available for in vivo use has limited optical methods to image substrate metabolism. Here, we present a novel near-infrared (NIR) free fatty acid (FFA) tracer suitable for in vivo imaging of deep tissues such as the heart. Using click chemistry, Alexa Fluor 647 DIBO Alkyne was conjugated to palmitic acid. Mice injected with 0.05 nmol/g bodyweight of the conjugate (AlexaFFA) were subjected to conditions known to increase FFA uptake in the heart (fasting) and BAT [cold exposure and injection with the ß3 adrenergic agonist CL 316, 243(CL)]. Organs were subsequently imaged both ex vivo and in vivo to quantify AlexaFFA uptake. The blood kinetics of AlexaFFA followed a two-compartment model with an initial fast compartment half-life of 0.14 h and a subsequent slow compartment half-life of 5.2 h, consistent with reversible protein binding. Ex vivo fluorescence imaging after overnight cold exposure and fasting produced a significant increase in AlexaFFA uptake in the heart (58 ± 12%) and BAT (278 ± 19%) compared to warm/fed animals. In vivo imaging of the heart and BAT after exposure to CL and fasting showed a significant increase in AlexaFFA uptake in the heart (48 ± 20%) and BAT (40 ± 10%) compared to saline-injected/fed mice. We present a novel near-infrared FFA tracer, AlexaFFA, that is suitable for in vivo quantification of FFA metabolism and can be applied in the context of a low cost, high throughput, and multiplexed optical imaging platform.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Colorantes Fluorescentes/administración & dosificación , Corazón/diagnóstico por imagen , Microscopía Intravital/métodos , Imagen Óptica/métodos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Línea Celular , Dioxoles/farmacología , Ácidos Grasos no Esterificados/metabolismo , Femenino , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Fluorodesoxiglucosa F18 , Semivida , Corazón/efectos de los fármacos , Inyecciones Intravenosas , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Microscopía Fluorescente , Imagen Molecular/métodos , Miocardio/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...