Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 52016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27177421

RESUMEN

Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a "monoclonal nose", glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a "monoclonal nose" and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output.


Asunto(s)
Red Nerviosa/fisiología , Red Nerviosa/fisiopatología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Bulbo Olfatorio/fisiopatología , Animales , Ratones Transgénicos , Trastornos del Olfato/genética
2.
Neuron ; 72(1): 49-56, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21982368

RESUMEN

In the piriform cortex, individual odorants activate a unique ensemble of neurons that are distributed without discernable spatial order. Piriform neurons receive convergent excitatory inputs from random collections of olfactory bulb glomeruli. Pyramidal cells also make extensive recurrent connections with other excitatory and inhibitory neurons. We introduced channelrhodopsin into the piriform cortex to characterize these intrinsic circuits and to examine their contribution to activity driven by afferent bulbar inputs. We demonstrated that individual pyramidal cells are sparsely interconnected by thousands of excitatory synaptic connections that extend, largely undiminished, across the piriform cortex, forming a large excitatory network that can dominate the bulbar input. Pyramidal cells also activate inhibitory interneurons that mediate strong, local feedback inhibition that scales with excitation. This recurrent network can enhance or suppress bulbar input, depending on whether the input arrives before or after the cortex is activated. This circuitry may shape the ensembles of piriform cells that encode odorant identity.


Asunto(s)
Interneuronas/fisiología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Células Piramidales/fisiología , Animales , Mapeo Encefálico/métodos , Ratones , Ratones Endogámicos C57BL , Imagen Molecular/métodos , Odorantes , Vías Olfatorias/anatomía & histología , Transmisión Sináptica/fisiología
3.
Nature ; 472(7342): 213-6, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21451525

RESUMEN

Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice. We have developed a tracing strategy to define the neural circuits that convey information from individual glomeruli in the olfactory bulb to the piriform cortex and the cortical amygdala. The spatial order in the bulb is discarded in the piriform cortex; axons from individual glomeruli project diffusely to the piriform without apparent spatial preference. In the cortical amygdala, we observe broad patches of projections that are spatially stereotyped for individual glomeruli. These projections to the amygdala are overlapping and afford the opportunity for spatially localized integration of information from multiple glomeruli. The identification of a distributive pattern of projections to the piriform and stereotyped projections to the amygdala provides an anatomical context for the generation of learned and innate behaviours.


Asunto(s)
Vías Olfatorias/anatomía & histología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Axones/fisiología , Mapeo Encefálico , Ratones , Técnicas de Trazados de Vías Neuroanatómicas , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Vías Olfatorias/citología
4.
Front Syst Neurosci ; 3: 13, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20057934

RESUMEN

Orbitofrontal cortex (OFC) is a region of prefrontal cortex implicated in the motivational control of behavior and in related abnormalities seen in psychosis and depression. It has been hypothesized that a critical mechanism in these disorders is the dysfunction of GABAergic interneurons that normally regulate prefrontal information processing. Here, we studied a subclass of interneurons isolated in rat OFC using extracellular waveform and spike train analysis. During performance of a goal-directed behavioral task, the firing of this class of putative fast-spiking (FS) interneurons showed robust temporal correlations indicative of a functionally coherent network. FS cell activity also co-varied with behavioral response latency, a key indicator of motivational state. Systemic administration of ketamine, a drug that can mimic psychosis, preferentially inhibited this cell class. Together, these results support the idea that OFC-FS interneurons form a critical link in the regulation of motivation by prefrontal circuits during normal and abnormal brain and behavioral states.

5.
Neuron ; 60(6): 1068-81, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19109912

RESUMEN

We have altered the neural representation of odors in the brain by generating a mouse with a "monoclonal nose" in which greater than 95% of the sensory neurons express a single odorant receptor, M71. As a consequence, the frequency of sensory neurons expressing endogenous receptor genes is reduced 20-fold. We observe that these mice can smell, but odor discrimination and performance in associative olfactory learning tasks are impaired. However, these mice cannot detect the M71 ligand acetophenone despite the observation that virtually all sensory neurons and glomeruli are activated by this odor. The M71 transgenic mice readily detect other odors in the presence of acetophenone. These observations have implications for how receptor activation in the periphery is represented in the brain and how these representations encode odors.


Asunto(s)
Discriminación en Psicología/fisiología , Nariz/fisiología , Odorantes , Trastornos del Olfato/patología , Neuronas Receptoras Olfatorias/metabolismo , Agresión/fisiología , Animales , Mapeo Encefálico , Potenciales Evocados/fisiología , Masculino , Ratones , Ratones Transgénicos , Trastornos del Olfato/genética , Trastornos del Olfato/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Vías Olfatorias/citología , Vías Olfatorias/metabolismo , Receptores Odorantes/genética , Conducta Sexual Animal/fisiología
6.
Neuron ; 51(4): 495-507, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16908414

RESUMEN

The orbitofrontal cortex (OFC) is thought to participate in making and evaluating goal-directed decisions. In rodents, spatial navigation is a major mode of goal-directed behavior, and anatomical and lesion studies implicate the OFC in spatial processing, but there is little direct evidence for coding of spatial or motor variables. Here, we recorded from ventrolateral and lateral OFC in an odor-cued two-alternative choice task requiring orientation and approach to spatial goal ports. In this context, over half of OFC neurons encoded choice direction or goal port location. A subset of neurons was jointly selective for the trial outcome and port location, information useful for the selection or evaluation of spatial goals. These observations show that the rodent OFC not only encodes information relating to general motivational significance, as shown previously, but also encodes spatiomotor variables needed to define specific behavioral goals and the locomotor actions required to attain them.


Asunto(s)
Lóbulo Frontal/fisiología , Objetivos , Orientación/fisiología , Percepción Espacial/fisiología , Potenciales de Acción/fisiología , Animales , Conducta Animal , Mapeo Encefálico , Conducta de Elección/fisiología , Señales (Psicología) , Aprendizaje Discriminativo/fisiología , Lóbulo Frontal/citología , Movimiento/fisiología , Neuronas/clasificación , Neuronas/fisiología , Curva ROC , Ratas , Tiempo de Reacción , Recompensa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...