Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; : 119424, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879109

RESUMEN

Birds are good bioindicators of disturbance in the environment. They are present in different habitats and trophic levels. In addition, rapid urbanization has led birds to use cities as shelter and for seeking food resources. Sewage treatment plants (STPs) are suitable locations for free-living birds within cities. However, few studies address the impacts of emerging pollutants from sewage treatment plants on wild birds. In this sense, the aim of this study was to analyze the genotoxic, mutagenic, and immunological impacts from metal and pollutant exposure on free-living birds collected at a STP. For comparison, birds were collected in a preserved environment, the Silvania National Forest (FLONA). To achieve this, we used non-destructive biomarkers sensitive to environmental changes. Birds were collected in both environments using mist nets. After collection, birds were weighed, measured, species-identified, and released. Blood was collected for comet assay, micronucleus test, and leukocyte profile, while feathers were collected for metal concentration analysis. Water physicochemical parameters were measured at both sites, and water samples were collected for metal analysis. Our results demonstrated that birds collected at the STP exhibit a higher frequency of genotoxic damage and erythrocyte abnormalities, and increased immune response compared to FLONA birds. Traces of potentially toxic metals, such as Hg and As, were found in the birds feathers from both environments, raising concerns about metal contamination in both environments. Trophic guilds appear to respond similarly to exposure. The parameters and metals found in the water reflect environmental characteristics and may be influencing pollutant availability. Finally, despite the advancement of our findings, studies linking these damages to detrimental effects on behavior and reproduction are encouraged.

2.
Aquat Toxicol ; 271: 106926, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713993

RESUMEN

Worldwide, the indiscriminate and escalating application of pesticides has led to extensive impacts on both the environment and non-target organisms. Phytoremediation, which employs plants to decontaminate environments, is a potential strategy for the mitigation of this damage. The present study assessed the phytoremedial potential of Salvinia auriculata, an aquatic macrophyte known to be effective for the removal of environmental contaminants. In the laboratory, Dendropsophus minutus tadpoles were exposed to different concentrations (0.035, 0.1, 1.0, and 1.5 mg/l) of the commercial insecticide Fipronil 800wg in two treatments - (i) simple exposure for 96 h, and (ii) exposure for 168 h in aquariums containing S. auriculata. In the first experiment, a mortality rate of 33.3 % was recorded at the highest Fipronil concentration (1.5 mg/l), and genotoxic parameters increased at all concentrations except 0.035 mg/L, in comparison with the control. In the second experiment, phytoremediation occurred at all the concentrations tested, with lower frequencies of cells with micronuclei, and binucleated, anucleated, and pyknotic nuclei being observed, in comparison with the first experiment. These findings highlight the potential effectiveness of S. auriculata for the phytoremediation of environments contaminated by pesticides and contribute to the understanding of the benefits of this approach for the protection and preservation of aquatic biodiversity.


Asunto(s)
Biodegradación Ambiental , Insecticidas , Larva , Pirazoles , Contaminantes Químicos del Agua , Animales , Larva/efectos de los fármacos , Pirazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Insecticidas/toxicidad , Anuros/fisiología
3.
Environ Sci Pollut Res Int ; 30(40): 92095-92106, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37480534

RESUMEN

Pollution generated by the mining industry can cause harm to wildlife. This study aimed to evaluate the cytotoxicity, genotoxicity and mutagenicity in bats environmentally exposed to open pit mining. Thus, 62 bats of the following species, Carollia perspicillata, Glossophaga soricina, Phyllostomus hastatus, and Desmodus rotundus exposed to mining activities (ferronickel) were used in the analysis. The animals were obtained in samplings in July and November of 2021, totaling 8 days of sampling in the field. The results indicated that species differ in the frequency of genotoxic damage between sampling points within the mining landscape. Cytotoxicity was observed by scoring of karyorrhexis, pyknosis and karyolysis. The most captured species, C. perspicillata, showed differences in DNA damage between exposed and unexposed populations, but no differences were observed between males (n = 14) and females (n = 20). G. soricina was also a sensitive species for indicating a high frequency of DNA damages compared to the omnivore P. hastatus. Elements such as Mn, Cr, Pb, and Zn observed in water samples were at high levels in the mining area. We conclude that bats in mining areas are susceptible to increased DNA damage as already identified for other species.


Asunto(s)
Antineoplásicos , Quirópteros , Animales , Femenino , Masculino , Mutágenos/toxicidad , Mutagénesis , Animales Salvajes , Daño del ADN
4.
Environ Toxicol Chem ; 42(11): 2422-2439, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37477494

RESUMEN

Changes in the natural landscape and the indiscriminate use of pesticides can have a major impact on aquatic environments and have contributed to the worldwide decline of amphibian populations. In the present study, we sampled tadpoles of three anuran amphibians (Boana albopunctata, Physalaemus cuvieri, and Dendropsophus minutus) from ponds in six different agricultural landscapes of the Brazilian Cerrado savanna and evaluated whether and to what extent genotoxic and mutagenic damage was related to land use (the amount of forest and agricultural remnants, and related physicochemical factors) and the presence of pesticides in the water of the study ponds. We also evaluated the hepatotoxicity in P. cuvieri, which was the most abundant species at five of the six sampling points. Clomazone and atrazine were the most common pesticides found in the ponds. The B. albopunctata and P. cuvieri tadpoles presented similar patterns of DNA damage among the sampling points. The least DNA damage was found in the D. minutus tadpoles, although this species was present in only one of the study ponds. More binucleated and anucleated cells were observed in B. albopunctata, but there was no significant variation among species in terms of the number of micronuclei or other erythrocytic nuclear abnormalities. Land use and physicochemical factors did not explain the variation in the DNA damage observed in the three anurans. The hepatotoxicity analyses of P. cuvieri revealed the presence of a series of alterations, including the enlargement of the sinusoids, vacuolization of the hepatocytes, the infiltration of inflammatory cells, hepatic steatosis, and dilation of the blood vessels. The interaction between physicochemical factors and the biomarkers analyzed in the present study is complex. In particular, it will be important to better elucidate which factors are contributing, either directly or indirectly, to the decline of anuran amphibian populations, especially in threatened biomes, such as the Brazilian Cerrado. In this case, we would encourage further in situ studies that assess the ecotoxicology of the landscape, together with the systematic monitoring of aquatic environments, to guarantee the long-term integrity of amphibian populations, and those of other organisms that play an essential functional role in the ecosystem. Environ Toxicol Chem 2023;42:2422-2439. © 2023 SETAC.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Plaguicidas , Animales , Brasil , Ecotoxicología , Ecosistema , Pradera , Anuros , Larva/genética , Biomarcadores
5.
Environ Monit Assess ; 195(8): 1000, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37495738

RESUMEN

Exposure to heavy metals in mining zones is a significant threat, which can affect ecosystem services and contribute to the decline of wild bat populations. The present study investigated the impacts caused by mining on two bat species in central Brazil, the nectarivorous Glossophaga soricina and the frugivorous Carollia perspicillata. The bats were collected from a nickel-mining zone (treatment) and a protected area (control). The leukocyte profile of each species was compiled and genotoxicity (comet assay) and mutagenicity (micronucleus test) were determined using the appropriate procedures. Glossophaga soricina presented significantly higher frequencies of eosinophils and monocytes in the mining zone in comparison with the protected area, whereas C. perspicillata presented higher frequencies of lymphocytes in the mining zone, but significantly lower frequencies of monocytes. Concomitantly, G. soricina also presented a higher frequency of DNA damage, although no variation was found in this parameter in C. perspicillata when comparing environments. We also found no significant differences between populations in terms of the frequency of micronuclei and other nuclear abnormalities. Overall, the results of the study indicate that bats are susceptible to immunological disorders and DNA damage in mining zones, with the nectarivorous G. soricina appearing to be relatively more susceptible and thus a potentially effective bioindicator of the impact of contamination in these environments.


Asunto(s)
Quirópteros , Metales Pesados , Animales , Brasil , Níquel , Quirópteros/genética , Ecosistema , Monitoreo del Ambiente , Metales Pesados/toxicidad , Minería , Daño del ADN , ADN
6.
Chemosphere ; 307(Pt 2): 135934, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35952787

RESUMEN

Environmental pollution drives the decline of species and, as flying mammals, bats can be considered to be excellent indicators of environmental quality, and the analysis of genetic biomarkers in these animals can provide important parameters for the assessment of environmental health. This review verifies the trends in pollution research, in particular, the use of genetic markers in the study of bats, based on a literature search of the Web of Science and Scopus platforms. Sixteen publications were identified during the search, which focused on the timeframe between 1996 and March 2022, including investigations of the effects of heavy metals, agricultural pesticides, and radiation. The studies were based primarily on the application of biomarkers for genotoxic analysis, including the comet assay, micronucleus test, and the Polymerase Chain Reaction (PCR). Only 55 bat species have been investigated up to now, that is, 4% of the 1447 currently recognized. In general, bats exposed to polluted environments presented a higher frequency of genotoxic and mutagenic damage than those sampled in clean environments. Given the importance of the diverse ecological functions provided by bats, including pest control, pollination, and seed dispersal, it is increasingly necessary to investigate the damage caused to the health of these animals exposed to areas with high concentrations of contaminants. Although genetic biomarkers have been used to investigate physiological parameters in bats for more than two decades, then, many knowledge gaps remain, worldwide, in terms of the number of species and localities investigated.


Asunto(s)
Quirópteros , Metales Pesados , Plaguicidas , Animales , Quirópteros/genética , Ecotoxicología , Contaminación Ambiental , Marcadores Genéticos , Metales Pesados/toxicidad , Plaguicidas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...