Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37425856

RESUMEN

Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.

2.
WIREs Mech Dis ; 14(3): e1545, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34738335

RESUMEN

Synapse elimination, also known as synaptic pruning, is a critical step in the maturation of neural circuits during brain development. Mounting evidence indicates that the complement cascade of the innate immune system plays an important role in synapse elimination. Studies indicate that excess synapses during development are opsonized by complement proteins and subsequently phagocytosed by microglia which expresses complement receptors. The process is regulated by diverse molecular signals, including complement inhibitors that affect the activation of complement, as well as signals that affect microglial recruitment and activation. These signals may promote or inhibit the removal of specific sets of synapses during development. The complement-microglia system has also been implicated in the pathogenesis of several developmental brain disorders, suggesting that the dysregulation of mechanisms of synapse pruning may underlie the specific circuitry defects in these diseases. Here, we review the latest evidence on the molecular and cellular mechanisms of complement-dependent and microglia-dependent synapse elimination during brain development, and highlight the potential of this system as a therapeutic target for developmental brain disorders. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Stem Cells and Development Immune System Diseases > Molecular and Cellular Physiology.


Asunto(s)
Encefalopatías , Microglía , Encéfalo/metabolismo , Encefalopatías/metabolismo , Proteínas del Sistema Complemento , Humanos , Sinapsis
3.
Glia ; 70(3): 451-465, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34762332

RESUMEN

The classical complement cascade mediates synapse elimination in the visual thalamus during early brain development. However, whether the primary visual cortex also undergoes complement-mediated synapse elimination during early visual system development remains unknown. Here, we examined microglia-mediated synapse elimination in the visual thalamus and the primary visual cortex of early postnatal C1q and SRPX2 knockout mice. In the lateral geniculate nucleus, deletion of C1q caused a persistent decrease in synapse elimination and microglial synapse engulfment, while deletion of SRPX2 caused a transient increase in the same readouts. In the C1q-SRPX2 double knockout mice, the C1q knockout phenotypes were dominant over the SRPX2 knockout phenotypes, a result which is consistent with SRPX2 being an inhibitor of C1q. We found that genetic deletion of either C1q or SRPX2 did not affect synapse elimination or microglial engulfment of synapses in layer 4 of the primary visual cortex in early brain development. Together, these results show that the classical complement pathway regulates microglia-mediated synapse elimination in the visual thalamus but not the visual cortex during early development of the central nervous system.


Asunto(s)
Proteínas de la Membrana/metabolismo , Microglía , Proteínas de Neoplasias/metabolismo , Corteza Visual , Animales , Complemento C1q/genética , Complemento C1q/metabolismo , Ratones , Microglía/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo , Corteza Visual/metabolismo
4.
Nat Neurosci ; 23(9): 1067-1078, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661396

RESUMEN

Complement-mediated synapse elimination has emerged as an important process in both brain development and neurological diseases, but whether neurons express complement inhibitors that protect synapses against complement-mediated synapse elimination remains unknown. Here, we show that the sushi domain protein SRPX2 is a neuronally expressed complement inhibitor that regulates complement-dependent synapse elimination. SRPX2 directly binds to C1q and blocks its activity, and SRPX2-/Y mice show increased C3 deposition and microglial synapse engulfment. They also show a transient decrease in synapse numbers and increase in retinogeniculate axon segregation in the lateral geniculate nucleus. In the somatosensory cortex, SRPX2-/Y mice show decreased thalamocortical synapse numbers and increased spine pruning. C3-/-;SRPX2-/Y double-knockout mice exhibit phenotypes associated with C3-/- mice rather than SRPX2-/Y mice, which indicates that C3 is necessary for the effect of SRPX2 on synapse elimination. Together, these results show that SRPX2 protects synapses against complement-mediated elimination in both the thalamus and the cortex.


Asunto(s)
Encéfalo/embriología , Proteínas del Sistema Complemento , Proteínas de la Membrana/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Animales , Encéfalo/metabolismo , Activación de Complemento/fisiología , Ratones , Ratones Noqueados
5.
PLoS One ; 13(6): e0199399, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29920554

RESUMEN

The FoxP2 transcription factor and its target genes have been implicated in developmental brain diseases with a prominent language component, such as developmental verbal dyspraxia and specific language impairment. How FoxP2 affects neural circuitry development remains poorly understood. The sushi domain protein SRPX2 is a target of FoxP2, and mutations in SRPX2 are associated with language defects in humans. We have previously shown that SRPX2 is a synaptogenic protein that increases excitatory synapse density. Here we provide the first characterization of mice lacking the SRPX2 gene, and show that these mice exhibit defects in both neural circuitry and communication and social behaviors. Specifically, we show that mice lacking SRPX2 show a specific reduction in excitatory VGlut2 synapses in the cerebral cortex, while VGlut1 and inhibitory synapses were largely unaffected. SRPX2 KO mice also exhibit an abnormal ultrasonic vocalization ontogenetic profile in neonatal pups, and reduced preference for social novelty. These data demonstrate a functional role for SRPX2 during brain development, and further implicate FoxP2 and its targets in regulating the development of vocalization and social circuits.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas de la Membrana/genética , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas de Neoplasias , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Conducta Social , Sinapsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...