Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(7): e1011330, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083711

RESUMEN

Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. We interfered with GEF function by interfering with CED-5's ability to bind Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies strongly support that the GAP function likely acts on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.


Asunto(s)
Actinas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Movimiento Celular , Animales , Actinas/metabolismo , Secuencias de Aminoácidos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Epidermis/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Morfogénesis/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética
2.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873140

RESUMEN

Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. A candidate GEF region on CED-5 faces towards Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies showed the GEF and GAP functions act on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.

3.
J Dev Biol ; 9(2)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067000

RESUMEN

Polarized epithelial cells adhere to each other at apical junctions that connect to the apical F-actin belt. Regulated remodeling of apical junctions supports morphogenesis, while dysregulated remodeling promotes diseases such as cancer. We have documented that branched actin regulator, WAVE, and apical junction protein, Cadherin, assemble together in developing C. elegans embryonic junctions. If WAVE is missing in embryonic epithelia, too much Cadherin assembles at apical membranes, and yet apical F-actin is reduced, suggesting the excess Cadherin is not fully functional. We proposed that WAVE supports apical junctions by regulating the dynamic accumulation of Cadherin at membranes. To test this model, here we examine if WAVE is required for Cadherin membrane enrichment and apical-basal polarity in a maturing epithelium, the post-embryonic C. elegans intestine. We find that larval and adult intestines have distinct apicobasal populations of Cadherin, each with distinct dependence on WAVE branched actin. In vivo imaging shows that loss of WAVE components alters post-embryonic E-cadherin membrane enrichment, especially at apicolateral regions, and alters the lateral membrane. Analysis of a biosensor for PI(4,5)P2 suggests loss of WAVE or Cadherin alters the polarity of the epithelial membrane. EM (electron microscopy) illustrates lateral membrane changes including separations. These findings have implications for understanding how mutations in WAVE and Cadherin may alter cell polarity.

4.
Curr Top Dev Biol ; 144: 161-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33992152

RESUMEN

As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.


Asunto(s)
Caenorhabditis elegans , Organogénesis , Animales , Caenorhabditis elegans/genética , Femenino , Morfogénesis
5.
Biol Open ; 9(11)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243762

RESUMEN

CDC-42 regulation of non-muscle myosin/NMY-2 is required for polarity maintenance in the one-cell embryo of Caenorhabditis elegans CDC-42 and NMY-2 regulate polarity throughout embryogenesis, but their contribution to later events of morphogenesis are less understood. We have shown that epidermal enclosure requires the GTPase CED-10/Rac1 and WAVE/Scar complex, its effector, to promote protrusions that drive enclosure through the branch actin regulator Arp2/3. Our analysis here of RGA-8, a homolog of SH3BP1/Rich1/ARHGAP17/Nadrin, with BAR and RhoGAP motifs, suggests it regulates CDC-42, so that actin and myosin/NMY-2 promote ventral enclosure during embryonic morphogenesis. Genetic and molecular data suggest RGA-8 regulates CDC-42, and phenocopies the CDC-42 pathway regulators WASP-1/WSP-1 and the F-BAR proteins TOCA-1 and TOCA-2. Live imaging shows RGA-8 and WSP-1 enrich myosin and regulate F-actin in migrating epidermal cells during ventral enclosure. Loss of RGA-8 alters membrane recruitment of active CDC-42. We propose TOCA proteins and RGA-8 use BAR domains to localize and regenerate CDC-42 activity, thus regulating F-actin levels, through the branched actin regulator WSP-1, and myosin enrichment. RhoGAP RGA-8 thus polarizes epithelia, to promote cell migrations and cell shape changes of embryonic morphogenesis.


Asunto(s)
Epitelio/enzimología , Epitelio/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Morfogénesis/genética , Organogénesis , Animales , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Organogénesis/genética , Transducción de Señal
6.
Development ; 145(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30389847

RESUMEN

During embryonic morphogenesis, cells and tissues undergo dramatic movements under the control of F-actin regulators. Our studies of epidermal cell migrations in developing Caenorhabditiselegans embryos have identified multiple plasma membrane signals that regulate the Rac GTPase, thus regulating WAVE and Arp2/3 complexes, to promote branched F-actin formation and polarized enrichment. Here, we describe a pathway that acts in parallel to Rac to transduce membrane signals to control epidermal F-actin through the GTPase RHO-1/RhoA. RHO-1 contributes to epidermal migration through effects on underlying neuroblasts. We identify signals to regulate RHO-1-dependent events in the epidermis. HUM-7, the C. elegans homolog of human MYO9A and MYO9B, regulates F-actin dynamics during epidermal migration. Genetics and biochemistry support that HUM-7 behaves as a GTPase-activating protein (GAP) for the RHO-1/RhoA and CDC-42 GTPases. Loss of HUM-7 enhances RHO-1-dependent epidermal cell behaviors. We identify SAX-3/ROBO as an upstream signal that contributes to attenuated RHO-1 activation through its regulation of HUM-7/Myo9. These studies identify a new role for RHO-1 during epidermal cell migration, and suggest that RHO-1 activity is regulated by SAX-3/ROBO acting on the RhoGAP HUM-7.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Morfogénesis , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Animales , Orientación del Axón , Caenorhabditis elegans/citología , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Embrión no Mamífero/citología , Epidermis/metabolismo , Epistasis Genética , Proteínas de Unión al GTP/metabolismo , Larva/metabolismo , Músculos/metabolismo , Fenotipo
7.
Dev Biol ; 434(1): 133-148, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223862

RESUMEN

Actin is an integral component of epithelial apical junctions, yet the interactions of branched actin regulators with apical junction components are still not clear. Biochemical data have shown that α-catenin inhibits Arp2/3-dependent branched actin. These results suggested that branched actin is only needed at earliest stages of apical junction development. We use live imaging in developing C. elegans embryos to test models for how WAVE-induced branched actin collaborates with other apical junction proteins during the essential process of junction formation and maturation. We uncover both early and late essential roles for WAVE in apical junction formation. Early, as the C. elegans intestinal epithelium becomes polarized, we find that WAVE components become enriched concurrently with the Cadherin components and before the DLG-1 apical accumulation. Live imaging of F-actin accumulation in polarizing intestine supports that the Cadherin complex components and branched actin regulators work together for apical actin enrichment. Later in junction development, the apical accumulation of WAVE and Cadherin components is shown to be interdependent: Cadherin complex loss alters WAVE accumulation, and WAVE complex loss increases Cadherin accumulation. To determine why Cadherin levels rise when WVE-1 is depleted, we use FRAP to analyze Cadherin dynamics and find that loss of WAVE as well as of the trafficking protein EHD-1/RME-1 increases Cadherin dynamics. EM studies in adults depleted of branched actin regulators support that WVE-1 maintains established junctions, presumably through its trafficking effect on Cadherin. Thus we propose a developmental model for junction formation where branched actin regulators are tightly interconnected with Cadherin junctions through their previously unappreciated role in Cadherin transport.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Polaridad Celular/fisiología , Embrión no Mamífero/embriología , Células Epiteliales/metabolismo , Uniones Estrechas/metabolismo , Animales , Cadherinas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/citología , Embrión no Mamífero/ultraestructura , Células Epiteliales/ultraestructura , Uniones Estrechas/genética , Uniones Estrechas/ultraestructura
8.
Dev Cell ; 41(2): 121-122, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441524

RESUMEN

Planar cell polarity (PCP) signaling orients developmental events in vertebrates and invertebrates, including convergent extension (CE). In this issue of Development Cell, Shah and Tanner et al. (2017) report that ROBO/SAX-3 signaling acts in parallel with PCP signaling to drive the CE required for ventral nerve cord assembly in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Axones/metabolismo , Caenorhabditis elegans , Humanos
9.
Dev Biol ; 377(2): 319-32, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23510716

RESUMEN

Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in Caenorhabditis elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Endocitosis/fisiología , Morfogénesis/fisiología , Actinas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Endosomas , Proteínas Fluorescentes Verdes , Modelos Biológicos , Interferencia de ARN , Proteínas de Transporte Vesicular/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(10): E918-27, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431196

RESUMEN

In early Caenorhabditis elegans embryos, the Wingless/int (Wnt)- and Src-signaling pathways function in parallel to induce both the division orientation of the endomesoderm (EMS) blastomere and the endoderm fate of the posterior EMS daughter cell, called E. Here, we show that, in addition to its role in endoderm specification, the ß-catenin-related protein Worm armadillo 1 (WRM-1) also plays a role in controlling EMS division orientation. WRM-1 localizes to the cortex of cells in both embryos and larvae and is released from the cortex in a Wnt-responsive manner. We show that WRM-1 cortical release is disrupted in a hypomorphic cyclin-dependent protein kinase 1 (cdk-1) mutant and that WRM-1 lacking potential CDK-1 phosphoacceptor sites is retained at the cortex. In both cases, cortical WRM-1 interferes with EMS spindle rotation without affecting endoderm specification. Finally, we show that removal of WRM-1 from the cortex can restore WT division orientation, even when both Wnt- and Src-signaling pathways are compromised. Our findings are consistent with a model in which Wnt signaling and CDK-1 modify WRM-1 in a temporal and spatial manner to unmask an intrinsic polarity cue required for proper orientation of the EMS cell division axis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , División Celular/genética , División Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Genes de Helminto , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Profase/genética , Profase/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal , Huso Acromático/metabolismo , Vía de Señalización Wnt , Familia-src Quinasas/metabolismo
11.
PLoS Genet ; 8(8): e1002863, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876199

RESUMEN

Many cells in a developing embryo, including neurons and their axons and growth cones, must integrate multiple guidance cues to undergo directed growth and migration. The UNC-6/netrin, SLT-1/slit, and VAB-2/Ephrin guidance cues, and their receptors, UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph, are known to be major regulators of cellular growth and migration. One important area of research is identifying the molecules that interpret this guidance information downstream of the guidance receptors to reorganize the actin cytoskeleton. However, how guidance cues regulate the actin cytoskeleton is not well understood. We report here that UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph differentially regulate the abundance and subcellular localization of the WAVE/SCAR actin nucleation complex and its activator, Rac1/CED-10, in the Caenorhabditis elegans embryonic epidermis. Loss of any of these three pathways results in embryos that fail embryonic morphogenesis. Similar defects in epidermal enclosure have been observed when CED-10/Rac1 or the WAVE/SCAR actin nucleation complex are missing during embryonic development in C. elegans. Genetic and molecular experiments demonstrate that in fact, these three axonal guidance proteins differentially regulate the levels and membrane enrichment of the WAVE/SCAR complex and its activator, Rac1/CED-10, in the epidermis. Live imaging of filamentous actin (F-actin) in embryos developing in the absence of individual guidance receptors shows that high levels of F-actin are not essential for polarized cell migrations, but that properly polarized distribution of F-actin is essential. These results suggest that proper membrane recruitment and activation of CED-10/Rac1 and of WAVE/SCAR by signals at the plasma membrane result in polarized F-actin that permits directed movements and suggest how multiple guidance cues can result in distinct changes in actin nucleation during morphogenesis.


Asunto(s)
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Proteínas de Ciclo Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Movimiento Celular/genética , Polaridad Celular/genética , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Inmunológicos/genética , Transducción de Señal , Grabación en Video , Proteínas de Unión al GTP rac/genética , Proteínas Roundabout
12.
Dev Biol ; 357(2): 356-69, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21798253

RESUMEN

Regulated movements of the nucleus are essential during zygote formation, cell migrations, and differentiation of neurons. The nucleus moves along microtubules (MTs) and is repositioned on F-actin at the cellular cortex. Two families of nuclear envelope proteins, SUN and KASH, link the nucleus to the actin and MT cytoskeletons during nuclear movements. However, the role of actin nucleators in nuclear migration and positioning is poorly understood. We show that the branched actin nucleator, Arp2/3, affects nuclear movements throughout embryonic and larval development in C. elegans, including nuclear migrations in epidermal cells and neuronal precursors. In one-cell embryos the migration of the male pronucleus to meet the female pronucleus after fertilization requires Arp2/3. Loss of Arp2/3 or its activators changes the dynamics of non-muscle myosin, NMY-2, and alters the cortical accumulation of posterior PAR proteins. Reduced establishment of the posterior microtubule cytoskeleton in Arp2/3 mutants correlates with reduced male pronuclear migration. The UNC-84/SUN nuclear envelope protein that links the nucleus to the MT and actin cytoskeleton is known to regulate later nuclear migrations. We show here it also positions the male pronucleus. These studies demonstrate a global role for Arp2/3 in nuclear migrations. In the C. elegans one-cell embryo Arp2/3 promotes the establishment of anterior/posterior polarity and promotes MT growth that propels the anterior migration of the male pronucleus. In contrast with previous studies emphasizing pulling forces on the male pronucleus, we propose that robust MT nucleation pushes the male pronucleus anteriorly to join the female pronucleus.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Núcleo Celular/metabolismo , Polaridad Celular , Movimiento , Cigoto/citología , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Centrosoma/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Epidérmicas , Epidermis/embriología , Epidermis/metabolismo , Femenino , Masculino , Microtúbulos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Membrana Nuclear/metabolismo , Cigoto/metabolismo
13.
Mol Biol Cell ; 22(16): 2886-99, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21697505

RESUMEN

It has been proposed that Arp2/3, which promotes nucleation of branched actin, is needed for epithelial junction initiation but is less important as junctions mature. We focus here on how Arp2/3 contributes to the Caenorhabditis elegans intestinal epithelium and find important roles for Arp2/3 in the maturation and maintenance of junctions in embryos and adults. Electron microscope studies show that embryos depleted of Arp2/3 form apical actin-rich microvilli and electron-dense apical junctions. However, whereas apical/basal polarity initiates, apical maturation is defective, including decreased apical F-actin enrichment, aberrant lumen morphology, and reduced accumulation of some apical junctional proteins, including DLG-1. Depletion of Arp2/3 in adult animals leads to similar intestinal defects. The DLG-1/AJM-1 apical junction proteins, and the ezrin-radixin-moesin homologue ERM-1, a protein that connects F-actin to membranes, are required along with Arp2/3 for apical F-actin enrichment in embryos, whereas cadherin junction proteins are not. Arp2/3 affects the subcellular distribution of DLG-1 and ERM-1. Loss of Arp2/3 shifts both ERM-1 and DLG-1 from pellet fractions to supernatant fractions, suggesting a role for Arp2/3 in the distribution of membrane-associated proteins. Thus, Arp2/3 is required as junctions mature to maintain apical proteins associated with the correct membranes.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Caenorhabditis elegans/citología , Membrana Celular/metabolismo , Uniones Intercelulares/metabolismo , Intestinos/citología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Citoesqueleto/metabolismo , Desarrollo Embrionario , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Larva/citología , Larva/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Faloidina/metabolismo , Fenotipo , Transporte de Proteínas , Interferencia de ARN , Fracciones Subcelulares/metabolismo
14.
PLoS Genet ; 5(10): e1000675, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19798448

RESUMEN

The TOCA family of F-BAR-containing proteins bind to and remodel lipid bilayers via their conserved F-BAR domains, and regulate actin dynamics via their N-Wasp binding SH3 domains. Thus, these proteins are predicted to play a pivotal role in coordinating membrane traffic with actin dynamics during cell migration and tissue morphogenesis. By combining genetic analysis in Caenorhabditis elegans with cellular biochemical experiments in mammalian cells, we showed that: i) loss of CeTOCA proteins reduced the efficiency of Clathrin-mediated endocytosis (CME) in oocytes. Genetic interference with CeTOCAs interacting proteins WSP-1 and WVE-1, and other components of the WVE-1 complex, produced a similar effect. Oocyte endocytosis defects correlated well with reduced egg production in these mutants. ii) CeTOCA proteins localize to cell-cell junctions and are required for proper embryonic morphogenesis, to position hypodermal cells and to organize junctional actin and the junction-associated protein AJM-1. iii) Double mutant analysis indicated that the toca genes act in the same pathway as the nematode homologue of N-WASP/WASP, wsp-1. Furthermore, mammalian TOCA-1 and C. elegans CeTOCAs physically associated with N-WASP and WSP-1 directly, or WAVE2 indirectly via ABI-1. Thus, we propose that TOCA proteins control tissues morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP-dependent actin-dynamics.


Asunto(s)
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Epidermis/embriología , Proteínas de la Membrana/metabolismo , Oocitos/crecimiento & desarrollo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/genética , Epidermis/crecimiento & desarrollo , Epidermis/metabolismo , Femenino , Masculino , Proteínas de la Membrana/genética , Morfogénesis , Oocitos/metabolismo , Unión Proteica , Transporte de Proteínas
15.
Dev Biol ; 324(2): 297-309, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18938151

RESUMEN

The WAVE/SCAR complex promotes actin nucleation through the Arp2/3 complex, in response to Rac signaling. We show that loss of WVE-1/GEX-1, the only C. elegans WAVE/SCAR homolog, by genetic mutation or by RNAi, has the same phenotype as loss of GEX-2/Sra1/p140/PIR121, GEX-3/NAP1/HEM2/KETTE, or ABI-1/ABI, the three other components of the C. elegans WAVE/SCAR complex. We find that the entire WAVE/SCAR complex promotes actin-dependent events at different times and in different tissues during development. During C. elegans embryogenesis loss of CED-10/Rac1, WAVE/SCAR complex components, or Arp2/3 blocks epidermal cell migrations despite correct epidermal cell differentiation. 4D movies show that this failure occurs due to decreased membrane dynamics in specific epidermal cells. Unlike myoblasts in Drosophila, epidermal cell fusions in C. elegans can occur in the absence of WAVE/SCAR or Arp2/3. Instead we find that subcellular enrichment of F-actin in epithelial tissues requires the Rac-WAVE/SCAR-Arp2/3 pathway. Intriguingly, we find that at the same stage of development both F-actin and WAVE/SCAR proteins are enriched apically in one epithelial tissue and basolaterally in another. We propose that temporally and spatially regulated actin nucleation by the Rac-WAVE/SCAR-Arp2/3 pathway is required for epithelial cell organization and movements during morphogenesis.


Asunto(s)
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Movimiento Celular , Epitelio/embriología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Polaridad Celular , Clonación Molecular , Embrión no Mamífero/embriología , Epitelio/metabolismo , Interpretación de Imagen Asistida por Computador , Mucosa Intestinal/metabolismo , Intestinos/embriología , Morfogénesis , Mutación , Fenotipo , Interferencia de ARN
16.
Genetics ; 179(4): 1957-71, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18689885

RESUMEN

In the developing nervous system, axons are guided to their targets by the growth cone. Lamellipodial and filopodial protrusions from the growth cone underlie motility and guidance. Many molecules that control lamellipodia and filopodia formation, actin organization, and axon guidance have been identified, but it remains unclear how these molecules act together to control these events. Experiments are described here that indicate that, in Caenorhabditis elegans, two WH2-domain-containing activators of the Arp2/3 complex, WVE-1/WAVE and WSP-1/WASP, act redundantly in axon guidance and that GEX-2/Sra-1 and GEX-3/Kette, molecules that control WAVE activity, might act in both pathways. WAVE activity is controlled by Rac GTPases, and data are presented here that suggest WVE-1/WAVE and CED-10/Rac act in parallel to a pathway containing WSP-1/WASP and MIG-2/RhoG. Furthermore, results here show that the CED-10/WVE-1 and MIG-2/WSP-1 pathways act in parallel to two other molecules known to control lamellipodia and filopodia and actin organization, UNC-115/abLIM and UNC-34/Enabled. These results indicate that at least three actin-modulating pathways act in parallel to control actin dynamics and lamellipodia and filopodia formation during axon guidance (WASP-WAVE, UNC-115/abLIM, and UNC-34/Enabled).


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Axones/fisiología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína 2 Relacionada con la Actina/genética , Proteína 2 Relacionada con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteína 3 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/metabolismo , Animales , Axones/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Movimiento Celular , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/genética
17.
Curr Biol ; 16(9): 845-53, 2006 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-16563765

RESUMEN

BACKGROUND: Axon migrations are guided by extracellular cues that can act as repellants or attractants. However, the logic underlying the manner through which attractive and repulsive responses are determined is unclear. Many extracellular guidance cues, and the cellular components that mediate their signals, have been implicated in both types of responses. RESULTS: Genetic analyses indicate that MIG-10/RIAM/lamellipodin, a cytoplasmic adaptor protein, functions downstream of the attractive guidance cue UNC-6/netrin and the repulsive guidance cue SLT-1/slit to direct the ventral migration of the AVM and PVM axons in C. elegans. Furthermore, overexpression of MIG-10 in the absence of UNC-6 and SLT-1 induces a multipolar phenotype with undirected outgrowths. Addition of either UNC-6 or SLT-1 causes the neurons to become monopolar. Moreover, the ability of UNC-6 or SLT-1 to direct the axon ventrally is enhanced by the MIG-10 overexpression. We also demonstrate that an interaction between MIG-10 and UNC-34, a protein that promotes actin-filament extension, is important in the response to guidance cues and that MIG-10 colocalizes with actin in cultured cells, where it can induce the formation of lamellipodia. CONCLUSIONS: We conclude that MIG-10 mediates the guidance of AVM and PVM axons in response to the extracellular UNC-6 and SLT-1 guidance cues. The attractive and repulsive guidance cues orient MIG-10-dependant axon outgrowth to cause a directional response.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas del Tejido Nervioso/fisiología , Animales , Procesos de Crecimiento Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular , Sistema Nervioso/crecimiento & desarrollo , Netrinas
18.
Curr Biol ; 16(1): 47-55, 2006 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-16343905

RESUMEN

BACKGROUND: At the onset of embryogenesis, key developmental regulators called determinants are activated asymmetrically to specify the body axes and tissue layers. In C. elegans, this process is regulated in part by a conserved family of CCCH-type zinc finger proteins that specify the fates of early embryonic cells. The asymmetric localization of these and other determinants is regulated in early embryos through motor-dependent physical translocation as well as selective proteolysis. RESULTS: We show here that the CCCH-type zinc finger protein OMA-1 serves as a nexus for signals that regulate the transition from oogenesis to embryogenesis. While OMA-1 promotes oocyte maturation during meiosis, destruction of OMA-1 is needed during the first cell division for the initiation of ZIF-1-dependent proteolysis of cell-fate determinants. Mutations in four conserved protein kinase genes-mbk-2/Dyrk, kin-19/CK1alpha, gsk-3, and cdk-1/CDC2-cause stabilization of OMA-1 protein, and their phenotypes are partially suppressed by an oma-1 loss-of-function mutation. OMA-1 proteolysis also depends on Cyclin B3 and on a ZIF-1-independent CUL-2-based E3 ubiquitin ligase complex, as well as the CUL-2-interacting protein ZYG-11 and the Skp1-related proteins SKR-1 and SKR-2. CONCLUSIONS: Our findings suggest that a CDK1/Cyclin B3-dependent activity links OMA-1 proteolysis to completion of the first cell cycle and support a model in which OMA-1 functions to prevent the premature activation of cell-fate determinants until after they are asymmetrically partitioned during the first mitosis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , Proteínas Portadoras/metabolismo , Oocitos/enzimología , Oocitos/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Proteína Quinasa CDC2/metabolismo , Diferenciación Celular , Secuencia Conservada , Embrión no Mamífero/citología , Glucógeno Sintasa Quinasa 3/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/metabolismo , Oocitos/citología , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Alineación de Secuencia , Transducción de Señal , Proteínas Wnt/metabolismo
19.
Proc Natl Acad Sci U S A ; 101(41): 14955-60, 2004 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-15469912

RESUMEN

Presenilins (PSs) are required for Notch signaling in the development of vertebrates and invertebrates. Mutations in human PS1 and PS2 homologs are a cause of familial Alzheimer's disease (AD). The function of the recently identified ancient family of IMPAS proteins (IMP/SPP/PSH) homologous to PSs is not yet known. We show here that, unlike PSs, IMPs (orthologous C. elegans Ce-imp-2 and human hIMP1/SPP) do not promote Notch (C. elegans lin-12,glp-1) proteolysis or signaling. The knock-down of Ce-imp-2 leads to embryonic death and an abnormal molting phenotype in Caenorhabditis elegans. The molting defect induced by Ce-imp-2 deficiency was mimicked by depleting cholesterol or disrupting Ce-lrp-1 and suppressed, in part, by expression of the Ce-lrp-1 derivate. C. elegans lrp-1 is a homolog of mammalian megalin, lipoprotein receptor-related protein (LRP) receptors essential for cholesterol and lipoprotein endocytosis and signaling. These data suggest that IMPs are functionally distinct from related PSs and implicate IMPs as critical regulators of development that may potentially interact with the lipid-lipoprotein receptor-mediated pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Endopeptidasas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/genética , Animales , Clonación Molecular , Interferencia de ARN , ARN Bicatenario/genética , Proteínas Recombinantes/metabolismo
20.
Genes Dev ; 16(5): 620-32, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11877381

RESUMEN

During body morphogenesis precisely coordinated cell movements and cell shape changes organize the newly differentiated cells of an embryo into functional tissues. Here we describe two genes, gex-2 and gex-3, whose activities are necessary for initial steps of body morphogenesis in Caenorhabditis elegans. In the absence of gex-2 and gex-3 activities, cells differentiate properly but fail to become organized. The external hypodermal cells fail to spread over and enclose the embryo and instead cluster on the dorsal side. Postembryonically gex-3 activity is required for egg laying and for proper morphogenesis of the gonad. GEX-2 and GEX-3 proteins colocalize to cell boundaries and appear to directly interact. GEX-2 and GEX-3 are highly conserved, with vertebrate homologs implicated in binding the small GTPase Rac and a GEX-3 Drosophila homolog, HEM2/NAP1/KETTE, that interacts genetically with Rac pathway mutants. Our findings suggest that GEX-2 and GEX-3 may function at cell boundaries to regulate cell migrations and cell shape changes required for proper morphogenesis and development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Caenorhabditis elegans/crecimiento & desarrollo , Movimiento Celular , Proteínas de Drosophila , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Compartimento Celular , Secuencia Conservada , Genes de Helminto , Datos de Secuencia Molecular , Morfogénesis , Oviposición/genética , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rac/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA