Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 228: 113420, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37379702

RESUMEN

HYPOTHESIS: Due to the inability of nano-carriers to passively cross the cell membrane, cell penetration enhancers are used to accelerate cytoplasmic delivery of antineoplastic drugs. In this regard, snake venom phospholipase A2 peptides are known for their ability to destabilize natural and artificial membranes. In this context, functionalized liposomes with peptide pEM-2 should favor the incorporation of doxorubicin and increase its cytotoxicity in HeLa cells compared to free doxorubicin, and doxorubicin encapsulated in non-functionalized liposomes. EXPERIMENTS: Several characteristics were monitored, including doxorubicin loading capacity of the liposomes, as well as the release and uptake before and after functionalization. Cell viability and half-maximal inhibition concentrations were determined in HeLa cells. FINDINGS: In vitro studies showed that functionalization of doxorubicin-loaded PC-NG liposomes with pEM-2 not only improved the amount of doxorubicin delivered compared to free doxorubicin or other doxorubicin-containing formulations, but also showed enhanced cytotoxicity against HeLa cells. The PC-NG liposomes loaded with doxorubicin improved treatment efficacy by reducing the IC50 value and incubation time. This increase in cell toxicity was directly related to the concentration of pEM-2 peptide bound to the liposomes. We conclude that the cytotoxicity observed in HeLa cells due to the action of doxorubicin was strongly favored when encapsulated in synthetic liposomes and functionalized with the pEM-2 peptide.


Asunto(s)
Doxorrubicina , Liposomas , Humanos , Liposomas/farmacología , Células HeLa , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Péptidos/farmacología , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
2.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957654

RESUMEN

Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.


Asunto(s)
Membrana Dobles de Lípidos/química , Membranas Artificiales , Microscopía de Fuerza Atómica/métodos , Silicio/química , 1,2-Dipalmitoilfosfatidilcolina/química , Transición de Fase , Fosfolípidos/química , Temperatura , Vacio , Volatilización
3.
Chem Phys Lipids ; 230: 104927, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32454007

RESUMEN

In the present work, we show how amphipathic diblock copolymers affect the physicochemical properties of the lipid bilayer of DPPC liposome. Diblock copolymers proposed for this study are focused in the difference between PLA and PCL hydrophobic block, because PLA and PCL differ in their glass transition temperature, where a higher ratio of PLA, lowers the flexibility of the diblock copolymer. On the contrary, a greater proportion of PCL makes the diblock copolymer more flexible. This flexibility difference between hydrophobic block would affect the physicochemical properties of lipid bilayer of DPPC. The difference of rigidity or flexibility of hydrophobic block and their interaction with DPPC large unilamellar vesicles (LUVs) was evaluated at low and high copolymers concentration. The copolymer concentrations used were chosen based on their respective cmc. We measure (a) Thermotropic behavior from GP of Laurdan and fluorescence anisotropy of DPH; (b) Relation between wavelength excitation and generalized polarization of Laurdan; (c) Time-resolved fluorescence anisotropy of DPH; (d) Water outflow through the lipid bilayer and (e) calcein release from DPPC LUVs. Furthermore, large unilamellar vesicles in the absence and in the presence of different copolymers were characterized by size and zeta-potential. The results show that the diblock copolymer at high PLA/PCL ratio, that is, greater rigidity of hydrophobic block produces an increase of the phase transition temperature (Tm). For DPPC LUVs, Tm increase 3.5 °C at low and about 4.5 °C at high copolymers concentration, sensed by Laurdan and DPH fluorescent probes, although the DPPC/copolymers molar ratio for Cop4 is higher than Cop3, Cop2 and Cop1. In addition, we observed a decrease in the polarity of microenvironments in the bilayer and an increase in the order of the acyl chains in the bilayer to a high proportion of PLA. Furthermore, the presence of diblock copolymer with high proportion of PLA, decreases water outflow from DPPC liposome and water efflux is slower; leading to a decrease in calcein release from DPPC liposomes. Our results clearly show that the greater the stiffness of the hydrophobic block, greater degree of packaging of the lipid bilayer, greater the order of the acyl chains, and greater retention of water and calcein inside the liposome. Therefore, the presence of AB-type diblock copolymers with a more rigid hydrophobic block, stabilizes the lipid bilayer and would allow a more controlled release of water, and encapsulated molecules inside of the DPPC liposome.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Fenómenos Químicos , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Liposomas Unilamelares/química , Colorantes Fluorescentes/química , Modelos Moleculares , Conformación Molecular
4.
Photochem Photobiol Sci ; 16(8): 1268-1276, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28636041

RESUMEN

In this paper, we explored the fluorescence properties of eight aurone derivatives bearing methoxy groups and bromine atoms as substituents in the benzene rings. All derivatives showed strong solvatochromic absorption and emission properties in solvents of different polarities. Some of them showed high fluorescence quantum yields, which make them potential compounds for sensing applications. The position of the methoxy groups in the benzofuranone moiety and the presence of bromine atoms in the benzene ring had a strong influence on the fluorescence behaviour of the aurones. DFT calculations allowed us to explain the emission properties of aurones and their solvatochromism, which was related to an excited state with strong charge-transfer character. Aurone 4 has the most promising characteristics showing a large difference in the quantum yields and large Stokes shifts depending on the solvent polarities. These results prompted us to explore some preliminary biological applications for aurone 4 such as the sensing of hydrophobic pockets of a protein and its thermotropic behaviour in liposomes.


Asunto(s)
Benzofuranos/química , Modelos Teóricos , Benzofuranos/metabolismo , Humanos , Liposomas/química , Liposomas/metabolismo , Teoría Cuántica , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Solventes/química , Espectrometría de Fluorescencia
5.
Photochem Photobiol Sci ; 14(4): 748-56, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25611022

RESUMEN

In the present work, we evaluated the role of gramicidin conformation in its photosensitized oxidation in organic solvents when irradiated in the presence of riboflavin. Gramicidin conformation has been described as monomeric in trifluoroethanol and as an intertwined dimer in methanol. Gramicidin showed extensive photo-oxidation upon irradiation in the presence of riboflavin in both solvents, and tryptophan residues were identified to be involved. We synthesized a gramicidin derivative methylated at position 1 of the indole ring of tryptophan to assess its effect on gramicidin conformation and photo-oxidation. Methylated gramicidin showed very similar absorption and emission spectra to gramicidin, but different conformations were identified by circular dichroism spectra. Upon irradiation, N-methylated tryptophan residues in the gramicidin derivative were not easily photo-oxidized by riboflavin compared to gramicidin. Circular dichroism spectra for gramicidin in methanol changed significantly upon irradiation in the presence of riboflavin indicating a change in conformation, while in trifluoroethanol no such changes were observed. Time-resolved fluorescence and anisotropy studies showed that oxidized gramicidin in methanol had shorter fluorescence lifetimes and a shorter rotational correlation time compared to non-irradiated gramicidin. Additionally, SDS-PAGE analysis showed a marked change in the electrophoretic pattern, whereas the high-molecular-weight bands disappeared upon irradiation. We interpret all these results in terms of a riboflavin photosensitized shift in gramicidin conformation from intertwined to monomeric.


Asunto(s)
Gramicidina/química , Fármacos Fotosensibilizantes/química , Riboflavina/química , Triptófano/química , Anisotropía , Bacillus , Dicroismo Circular , Dimerización , Electroforesis en Gel de Poliacrilamida , Fluorescencia , Gramicidina/síntesis química , Metanol/química , Metilación , Oxidación-Reducción , Procesos Fotoquímicos , Conformación Proteica , Solventes/química , Trifluoroetanol/química , Triptófano/síntesis química
6.
PLoS One ; 9(5): e97261, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24816927

RESUMEN

Cyclic lipopeptides are produced by a soil Bacillus megaterium strain and several other Bacillus species. In this work, they are detected both in the Bacillus intact cells and the cells culture medium by MALDI-TOF mass spectrometry. The cyclic lipopeptides self-assemble in water media producing negatively charged and large aggregates (300-800 nm of mean hydrodynamic radius) as evaluated by dynamic light scattering and zeta-potential analysis. The aggregate size depends on pH and ionic strength. However, it is not affected by changes in the osmolarity of the outer medium suggesting the absence of an internal aqueous compartment despite the occurrence of low molecular weight phospholipids in their composition as determined from inorganic phosphorus analysis. The activity against a sensitive Bacillus cereus strain was evaluated from inhibition halos and B. cereus lysis. Essential features determining the antibiotic activity on susceptible Bacillus cereus cells are the preserved cyclic moiety conferring cyclic lipopeptides resistance to proteases and the medium pH. The aggregates are inactive per se at the pH of the culture medium which is around 6 or below. The knock out of the sensitive cells only takes place when the aggregates are disassembled due to a high negative charge at pH above 6.


Asunto(s)
Bacillus megaterium/metabolismo , Lipopéptidos/biosíntesis , Interacciones Microbianas/fisiología , Péptidos Cíclicos/biosíntesis , Agregado de Proteínas , Microbiología del Suelo , Bacillus cereus/efectos de los fármacos , Concentración de Iones de Hidrógeno , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Fósforo/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tensoactivos/química
7.
Dalton Trans ; 42(43): 15502-13, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24030321

RESUMEN

In the present work we report the synthesis and the electrochemical, photoluminescent and electroluminescent properties of two new Ru(II) complexes described by the general formula [Ru(phen)2X](2+), where phen is 1,10-phenanthroline. The X ligand consists of a 2,2'-bipyridine (bpy) unit substituted with two phenyl rings connected to the bpy core through a saturated (Lhydro = 4,4'-diphenylethyl-2,2'-bipyridine) or a conjugated (LH = 4,4'-bis(α-styrene)-2,2'-bipyridine) carbon-carbon bridge. The photoluminescent spectra indicate that, both in solution and solid state, the complex bearing the aliphatic substitution bridges exhibits a higher quantum yield and a longer excited state lifetime than the fully conjugated complex. The new complexes were used in light-emitting electrochemical cells (LECs) showing red emission for the complex with the Lhydro ligand and no light emission for the complex incorporating the LH ligand. This and the photophysical properties make it plausible that for these complexes the degree of freedom increases with aliphatic substitution. As a consequence, the negative effect of the auto-quenching processes taking place in solid LEC devices due to the close molecular packing is limited. When compared with the archetype [Ru(phen)3](2+) complex, the complex with aliphatic substitution shows better performance in the device supporting the beneficial effect of the bulky substitution.

8.
Biochim Biophys Acta ; 1818(12): 3064-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22960286

RESUMEN

The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Gramicidina/metabolismo , Membrana Dobles de Lípidos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Gramicidina/química , Membrana Dobles de Lípidos/química , Lípidos/química , Conformación Molecular , Transición de Fase , Compuestos de Amonio Cuaternario/química
9.
PLoS One ; 7(6): e40254, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768264

RESUMEN

Changes in the cholesterol (Chol) content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs) for cuvette and giant unilamellar vesicles (GUVs) for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC) and dioctadecyl phosphatidylcholine (DOPC) in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH) was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan) at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i) the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii) the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP) suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo).


Asunto(s)
Colesterol/química , Microdominios de Membrana/química , Membranas Artificiales , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Anisotropía , Difenilhexatrieno/química , Polarización de Fluorescencia , Lauratos/química , Microscopía de Fluorescencia por Excitación Multifotónica , Transición de Fase , Espectrometría de Fluorescencia , Temperatura , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...