Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 367(6484)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193294

RESUMEN

Lambert et al question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Biodiversidad , Estudios Retrospectivos
2.
Science ; 363(6434): 1459-1463, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30923224

RESUMEN

Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.


Asunto(s)
Anuros/microbiología , Anuros/fisiología , Biodiversidad , Quitridiomicetos , Extinción Biológica , Micosis/veterinaria , Américas/epidemiología , Animales , Anuros/clasificación , Australia/epidemiología , Micosis/epidemiología
3.
Science ; 360(6389): 621-627, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29748278

RESUMEN

Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide.


Asunto(s)
Anfibios/microbiología , Extinción Biológica , África , Américas , Animales , Asia , Australia , Quitridiomicetos/clasificación , Quitridiomicetos/genética , Quitridiomicetos/aislamiento & purificación , Quitridiomicetos/patogenicidad , Europa (Continente) , Genes Fúngicos , Variación Genética , Hibridación Genética , Corea (Geográfico) , Filogenia , Análisis de Secuencia de ADN , Virulencia
4.
Sci Rep ; 8(1): 7772, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773857

RESUMEN

Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/aislamiento & purificación , Especies en Peligro de Extinción , Animales , Difusión de la Información , Larva/microbiología , Programas Informáticos
5.
Parasitol Res ; 117(5): 1643-1646, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29502295

RESUMEN

Amphibians are hosts for a wide variety of micro- and macro-parasites. Chigger mites from the Hannemania genus are known to infect a wide variety of amphibian species across the Americas. In Chile, three species (H. pattoni, H. gonzaleacunae and H. ortizi) have been described infecting native anurans; however, neither impacts nor the microscopic lesions associated with these parasites have been described. Here, we document 70% prevalence of chigger mite infection in Eupsophus roseus and absence of infection in Rhinoderma darwinii in the Nahuelbuta Range, Chile. Additionally, we describe the macroscopic and microscopic lesions produced by H. ortizi in one of these species, documenting previously undescribed lesions (granulomatous myositis) within the host's musculature. These findings highlight that further research to better understand the impacts of chigger mite infection on amphibians is urgently required in Chile and elsewhere.


Asunto(s)
Anuros/parasitología , Infestaciones por Ácaros/epidemiología , Miositis/veterinaria , Trombiculiasis/epidemiología , Trombiculidae/clasificación , Animales , Chile/epidemiología , Bosques , Infestaciones por Ácaros/parasitología , Miositis/parasitología , Enfermedades Parasitarias , Prevalencia , Trombiculiasis/veterinaria
6.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28954907

RESUMEN

The decline of wildlife populations due to emerging infectious disease often shows a common pattern: the parasite invades a naive host population, producing epidemic disease and a population decline, sometimes with extirpation. Some susceptible host populations can survive the epidemic phase and persist with endemic parasitic infection. Understanding host-parasite dynamics leading to persistence of the system is imperative to adequately inform conservation practice. Here we combine field data, statistical and mathematical modelling to explore the dynamics of the apparently stable Rhinoderma darwinii-Batrachochytrium dendrobatidis (Bd) system. Our results indicate that Bd-induced population extirpation may occur even in the absence of epidemics and where parasite prevalence is relatively low. These empirical findings are consistent with previous theoretical predictions showing that highly pathogenic parasites are able to regulate host populations even at extremely low prevalence, highlighting that disease threats should be investigated as a cause of population declines even in the absence of an overt increase in mortality.


Asunto(s)
Anuros/parasitología , Quitridiomicetos/patogenicidad , Extinción Biológica , Interacciones Huésped-Parásitos , Modelos Biológicos , Animales , Modelos Estadísticos , Micosis/veterinaria , Parásitos , Dinámica Poblacional
7.
Ecol Appl ; 27(5): 1633-1645, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28397328

RESUMEN

Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios.


Asunto(s)
Distribución Animal , Anuros/fisiología , Cambio Climático , Conservación de los Recursos Naturales , Animales , Argentina , Chile , Modelos Biológicos , Factores de Tiempo
8.
Glob Chang Biol ; 23(9): 3543-3553, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28055125

RESUMEN

Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio-demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the role of different factors contributing to the emergence and spread of this catastrophic disease.


Asunto(s)
Anfibios/microbiología , Biodiversidad , Micosis/veterinaria , Filogenia , Anfibios/genética , Anfibios/crecimiento & desarrollo , Animales , Chile , Quitridiomicetos , Humanos , Dinámica Poblacional , Reproducción
9.
Ecohealth ; 13(4): 775-783, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27682604

RESUMEN

Amphibians face an extinction crisis with no precedence. Two emerging infectious diseases, ranaviral disease caused by viruses within the genus Ranavirus and chytridiomycosis due to Batrachochytrium dendrobatidis (Bd), have been linked with amphibian mass mortalities and population declines in many regions of the globe. The African clawed frog (Xenopus laevis) has been indicated as a vector for the spread of these pathogens. Since the 1970s, this species has been invasive in central Chile. We collected X. laevis and dead native amphibians in Chile between 2011 and 2013. We conducted post-mortem examinations and molecular tests for Ranavirus and Bd. Eight of 187 individuals (4.3 %) tested positive for Ranavirus: seven X. laevis and a giant Chilean frog (Calyptocephallela gayi). All positive cases were from the original area of X. laevis invasion. Bd was found to be more prevalent (14.4 %) and widespread than Ranavirus, and all X. laevis Bd-positive animals presented low to moderate levels of infection. Sequencing of a partial Ranavirus gene revealed 100 % sequence identity with Frog Virus 3. This is the first report of Ranavirus in Chile, and these preliminary results are consistent with a role for X. laevis as an infection reservoir for both Ranavirus and Bd.


Asunto(s)
Xenopus laevis/virología , Anfibios , Animales , Anuros , Chile , Quitridiomicetos/patogenicidad , Ranavirus/patogenicidad , Xenopus laevis/microbiología
10.
Dis Aquat Organ ; 118(3): 259-65, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025313

RESUMEN

Chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) has been recognized as a major driver of amphibian declines worldwide. Central and northern Asia remain as the greatest gap in the knowledge of the global distribution of Bd. In China, Bd has recently been recorded from south and central regions, but areas in the north remain poorly surveyed. In addition, a recent increase in amphibian farming and trade has put this region at high risk for Bd introduction. To investigate this, we collected a total of 1284 non-invasive skin swabs from wild and captive anurans and caudates, including free-ranging, farmed, ornamental, and museum-preserved amphibians. Bd was detected at low prevalence (1.1%, 12 of 1073) in live wild amphibians, representing the first report of Bd infecting anurans from remote areas of northwestern China. We were unable to obtain evidence of the historical presence of Bd from museum amphibians (n = 72). Alarmingly, Bd was not detected in wild amphibians from the provinces of northeastern China (>700 individuals tested), but was widely present (15.1%, 21 of 139) in amphibians traded in this region. We suggest that urgent implementation of measures is required to reduce the possibility of further spread or inadvertent introduction of Bd to China. It is unknown whether Bd in northern China belongs to endemic and/or exotic genotypes, and this should be the focus of future research.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/aislamiento & purificación , Micosis/veterinaria , Crianza de Animales Domésticos , Animales , Animales Salvajes , China/epidemiología , Quitridiomicetos/genética , ADN de Hongos/aislamiento & purificación , Museos , Micosis/epidemiología
11.
Front Zool ; 12: 37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26705403

RESUMEN

BACKGROUND: Body size variation has played a central role in biogeographical research, however, most studies have aimed to describe trends rather than search for underlying mechanisms. In order to provide a more comprehensive understanding of the causes of intra-specific body size variation in ectotherms, we evaluated eight hypotheses proposed in the literature to account for geographical body size variation using the Darwin's frog (Rhinoderma darwinii), an anuran species widely distributed in the temperate forests of South America. Each of the evaluated hypotheses predicted a specific relationship between body size and environmental variables. The level of support for each of these hypotheses was assessed using an information-theoretic approach and based on data from 1015 adult frogs obtained from 14 sites across the entire distributional range of the species. RESULTS: There was strong evidence favouring a single model comprising temperature seasonality as the predictor variable. Larger body sizes were found in areas of greater seasonality, giving support to the "starvation resistance" hypothesis. Considering the known role of temperature on ectothermic metabolism, however, we formulated a new, non-exclusive hypothesis, termed "hibernation hypothesis": greater seasonality is expected to drive larger body size, since metabolic rate is reduced further and longer during colder, longer winters, leading to decreased energy depletion during hibernation, improved survival and increased longevity (and hence growth). Supporting this, a higher post-hibernation body condition in animals from areas of greater seasonality was found. CONCLUSIONS: Despite largely recognized effects of temperature on metabolic rate in ectotherms, its importance in determining body size in a gradient of seasonality has been largely overlooked so far. Based on our results, we present and discuss an alternative mechanism, the "hibernation hypothesis", underlying geographical body size variation, which can be helpful to improve our understanding of biogeographical patterns in ectotherms.

12.
Ecol Evol ; 5(18): 4079-97, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26445660

RESUMEN

The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co-evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen "hot spots," we need to identify pathogen "cold spots" so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of "the Ghost of Epizootics Past" to discuss expected patterns in postepizootic host communities.

13.
Ecohealth ; 11(2): 241-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24419667

RESUMEN

Chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has been implicated in amphibian population declines worldwide. However, no amphibian declines or extinctions associated with Bd have been reported in Asia. To investigate the history of this pathogen in China, we examined 1,007 museum-preserved amphibian specimens of 80 species collected between 1933 and 2009. Bd was detected in 60 individuals (6.0%), with the earliest case of Bd infection occurring in one specimen of Bufo gargarizans and two Fejervarya limnocharis, all collected in 1933 from Chongqing, southwest China. Although mainly detected in non-threatened native amphibians, Bd was also found in four endangered species. We report the first evidence of Bd for Taiwan and the first detection of Bd in the critically endangered Chinese giant salamander (Andrias davidianus). Bd appears to have been present at a low rate of infection since at least the 1930s in China, and no significant differences in prevalence were detected between decades or provinces, suggesting that a historical steady endemic relationship between Bd and Chinese amphibians has occurred. Our results add new insights on the global emergence of Bd and suggest that this pathogen has been more widely distributed in the last century than previously believed.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/aislamiento & purificación , Micosis/microbiología , Animales , China/epidemiología , Quitridiomicetos/genética , Cartilla de ADN , Extinción Biológica , Historia del Siglo XX , Historia del Siglo XXI , Museos , Micosis/epidemiología , Micosis/historia , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Manejo de Especímenes
14.
PLoS One ; 8(11): e79862, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278196

RESUMEN

Darwin's frogs (Rhinoderma darwinii and R. rufum) are two species of mouth brooding frogs from Chile and Argentina that have experienced marked population declines. Rhinoderma rufum has not been found in the wild since 1980. We investigated historical and current evidence of Batrachochytrium dendrobatidis (Bd) infection in Rhinoderma spp. to determine whether chytridiomycosis is implicated in the population declines of these species. Archived and live specimens of Rhinoderma spp., sympatric amphibians and amphibians at sites where Rhinoderma sp. had recently gone extinct were examined for Bd infection using quantitative real-time PCR. Six (0.9%) of 662 archived anurans tested positive for Bd (4/289 R. darwinii; 1/266 R. rufum and 1/107 other anurans), all of which had been collected between 1970 and 1978. An overall Bd-infection prevalence of 12.5% was obtained from 797 swabs taken from 369 extant individuals of R. darwinii and 428 individuals representing 18 other species of anurans found at sites with current and recent presence of the two Rhinoderma species. In extant R. darwinii, Bd-infection prevalence (1.9%) was significantly lower than that found in other anurans (7.3%). The prevalence of infection (30%) in other amphibian species was significantly higher in sites where either Rhinoderma spp. had become extinct or was experiencing severe population declines than in sites where there had been no apparent decline (3.0%; x(2) = 106.407, P<0.001). This is the first report of widespread Bd presence in Chile and our results are consistent with Rhinoderma spp. declines being due to Bd infection, although additional field and laboratory investigations are required to investigate this further.


Asunto(s)
Quitridiomicetos/fisiología , Anfibios/fisiología , Animales , Argentina , Chile , Extinción Biológica , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
PLoS One ; 8(6): e66957, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776705

RESUMEN

Darwin's frogs (Rhinoderma darwinii and R. rufum) are two species of mouth-brooding frogs from Chile and Argentina. Here, we present evidence on the extent of declines, current distribution and conservation status of Rhinoderma spp.; including information on abundance, habitat and threats to extant Darwin's frog populations. All known archived Rhinoderma specimens were examined in museums in North America, Europe and South America. Extensive surveys were carried out throughout the historical ranges of R. rufum and R. darwinii from 2008 to 2012. Literature review and location data of 2,244 archived specimens were used to develop historical distribution maps for Rhinoderma spp. Based on records of sightings, optimal linear estimation was used to estimate whether R. rufum can be considered extinct. No extant R. rufum was found and our modelling inferred that this species became extinct in 1982 (95% CI, 1980-2000). Rhinoderma darwinii was found in 36 sites. All populations were within native forest and abundance was highest in Chiloé Island, when compared with Coast, Andes and South populations. Estimated population size and density (five populations) averaged 33.2 frogs/population (range, 10.2-56.3) and 14.9 frogs/100 m(2) (range, 5.3-74.1), respectively. Our results provide further evidence that R. rufum is extinct and indicate that R. darwinii has declined to a much greater degree than previously recognised. Although this species can still be found across a large part of its historical range, remaining populations are small and severely fragmented. Conservation efforts for R. darwinii should be stepped up and the species re-classified as Endangered.


Asunto(s)
Distribución Animal , Anuros/fisiología , Conservación de los Recursos Naturales/estadística & datos numéricos , Especies en Peligro de Extinción , Extinción Biológica , Animales , Argentina , Chile , Dinámica Poblacional , Especificidad de la Especie
16.
J Wildl Dis ; 44(4): 979-82, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18957654

RESUMEN

Six free-ranging marine otters (Lontra felina) were livetrapped on the central coast of Chile and implanted with specially designed radiotransmitters as part of a spatial ecology study. Marine otters frequent the rocky seashore, often squeezing their narrow bodies through cracks and crevices and grooming themselves on the rocks. They are also among the smallest of the otter species, weighing between 3.4 kg and 4.5 kg. For these reasons, the transmitter used was small, rectangular, and flat, measuring 3.5 x 3.2 x 1.0 cm. They were implanted using a ventral midline approach to minimize contact between the skin incision and sharp-edged rocks. Surgical incisions healed within 2 wk. The transmitters functioned well, but the duration varied from 62 days to 143 days instead of the 240 days predicted by the manufacturer. All six marine otters reestablished in their home ranges, and survey results suggest they survived well beyond the life of the transmitters.


Asunto(s)
Sistemas de Identificación Animal/instrumentación , Sistemas de Identificación Animal/métodos , Nutrias/cirugía , Prótesis e Implantes/veterinaria , Telemetría/veterinaria , Músculos Abdominales/cirugía , Animales , Chile , Femenino , Masculino , Telemetría/instrumentación , Telemetría/métodos , Factores de Tiempo
17.
J Zoo Wildl Med ; 37(4): 535-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17315440

RESUMEN

Nine marine otters (Lontra felina) were anesthetized 15 times with a combination of ketamine (5.3 +/- 0.9 [range: 4.5-8.0] mg/kg) and medetomidine (53 - 9 [range: 45-80] microg/kg) i.m. by hand syringe for the placement of radiotransmitters. Times to initial effect and induction period ranged from 1.1 to 5.0 min and 1.8 to 5.4 min, respectively. Minor complications did occur, including mild hypothermia in six otters and severe hypoxemia in one otter. After 34 and 63 min, anesthesia was antagonized with atipamezole (226 +/- 29 [range: 179-265] microg/kg) and all otters recovered within 3.3-26.8 min.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Ketamina/administración & dosificación , Medetomidina/administración & dosificación , Nutrias/fisiología , Respiración/efectos de los fármacos , Agonistas alfa-Adrenérgicos/administración & dosificación , Agonistas alfa-Adrenérgicos/efectos adversos , Antagonistas Adrenérgicos alfa/administración & dosificación , Anestésicos Disociativos/administración & dosificación , Anestésicos Disociativos/efectos adversos , Animales , Animales Salvajes , Temperatura Corporal/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Imidazoles/administración & dosificación , Inyecciones Intramusculares/veterinaria , Ketamina/efectos adversos , Medetomidina/efectos adversos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...