Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 256: 119181, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38768884

RESUMEN

Microplastic contamination has rapidly become a serious environmental issue, threatening marine ecosystems and human health. This review aims to not only understand the distribution, impacts, and transfer mechanisms of microplastic contamination but also to explore potential solutions for mitigating its widespread impact. This review encompasses the categorisation, origins, and worldwide prevalence of microplastics and methodically navigates the complicated structure of microplastics. Understanding the sources of minute plastic particles infiltrating water bodies worldwide is critical for successful removal. The presence and accumulation of microplastics has far reaching negative impacts on various marine creatures, eventually extending its implications to human health. Microplastics are known to affect the metabolic activities and the survival of microbial communities, phytoplankton, zooplankton, and fauna present in marine environments. Moreover, these microplastics cause developmental abnormalities, endocrine disruption, and several metabolic disorders in humans. These microplastics accumulates in aquatic environments through trophic transfer mechanisms and biomagnification, thereby disrupting the delicate balance of these ecosystems. The review also addresses the tactics for minimising the widespread impact of microplastics by suggesting practical alternatives. These include increasing public awareness, fostering international cooperation, developing novel cleanup solutions, and encouraging the use of environment-friendly materials. In conclusion, this review examines the sources and prevalence of microplastic contamination in marine environment, its impacts on living organisms and ecosystems. It also proposes various sustainable strategies to mitigate the problem of microplastics pollution. Also, the current challenges associated with the mitigation of these pollutants have been discussed and addressing these challenges require immediate and collective action for restoring the balance in marine ecosystems.

2.
Chemosphere ; 343: 140173, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37714490

RESUMEN

The production of low-cost solid adsorbents for carbon dioxide (CO2) capture has gained massive consideration. Biomass wastes are preferred as precursors for synthesis of CO2 solid adsorbents, due to their high CO2 adsorption efficiency, and ease of scalable low-cost production. This review particularly focuses on waste biomass-derived adsorbents with their CO2 adsorption performances. Specifically, studies related to carbon (biochar and activated carbon) and silicon (silicates and geopolymers)-based adsorbents were summarized. The impact of experimental parameters including nature of biomass, synthesis route, carbonization temperature and type of activation methods on the CO2 adsorption capacities of biomass-derived pure carbon and silicon-based adsorbents were evaluated. The development of various enhancement strategies on biomass-derived adsorbents for CO2 capture and their responsible factors that impact adsorbent's CO2 capture proficiency were also reviewed. The possible CO2 adsorption mechanisms on the adsorbent's surface were highlighted. The challenges and research gaps identified in this research area have also been emphasized, which will help as further research prospects.

3.
Environ Res ; 236(Pt 2): 116790, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517483

RESUMEN

The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.


Asunto(s)
Clorofenoles , Luz , Clorofenoles/química , Análisis Espectral , Catálisis
4.
Chemosphere ; 322: 138152, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36791812

RESUMEN

Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.


Asunto(s)
Polivinilos , Agua , Polímeros , Filtración
5.
Chemosphere ; 315: 137711, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608894

RESUMEN

The cupric oxide (CuO) loaded graphitic carbon nitride (g-C3N4) nanocomposites (CuO/g-C3N4) were prepared by a facile calcination method. The formation of monoclinic CuO nanocrystals along with g-C3N4 was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analysis. X-ray photoelectron spectral (XPS) analysis further confirms the formation of CuO/g-C3N4. Distribution of CuO stone-like crystalline nanoparticles on g-C3N4 nanosheets was observed by transmission electron microscopic images. The influence of CuO loading on the optical property of g-C3N4 was determined by ultraviolet (UV)-visible absorption and photoluminescence (PL) spectral analysis. Band gap was decreased from 2.7 to 2.3 eV by the addition of CuO nanoparticles. The catalytic performance of the synthesized samples in 4-nitrophenol (4-NP) and methyl orange (MO) reduction was evaluated. The 5 wt% CuO/g-C3N4 showed 99.5% (7 min) and 99.7% (4 min) reduction efficiency for 4-NP and MO respectively. The 5 wt% CuO/g-C3N4 could become a potential catalyst in the chemical treatment of organic pollutants.


Asunto(s)
Cobre , Luz , Espectroscopía Infrarroja por Transformada de Fourier
6.
Environ Res ; 222: 115358, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702188

RESUMEN

The subject of water contamination and how it gets defiled to the society and humans is confabulating from the past decades. Phenolic compounds widely exist in the water sources and it is emergent to determine the toxicity in natural and drinking water, because it is hazardous to the humans. Among these compounds, catechol has sought a strong concern because of its rapid occurrence in nature and its potential toxicity to humans. The present work aims to develop an effective electrochemical sensing of catechol using mesoporous structure of Fe3O4-TiO2 decorated on glassy carbon (GC) electrode. The creation of pure TiO2 using the sol-gel technique was the first step in the synthesis protocol for binary nanocomposite, which was then followed by the loading of Fe3O4 nanoparticles on the surface of TiO2 using the thermal decomposition method. The resultant Fe3O4-TiO2 based nanocomposite exhibited mesoporous structure and the cavities were occupied with highly active magnetite nanoparticles (Fe3O4) with high specific surface area (90.63 m2/g). When compared to pure TiO2, catechol showed a more prominent electrochemical response for Fe3O4-TiO2, with a significant increase in anodic peak current at a lower oxidation potential (0.387 V) with a detection limit of 45 µM. Therefore, the prepared magnetite binary nanocomposite can serve as an efficient electroactive material for sensing of catechol, which could also act as a promising electrocatalyst for various electrocatalytic applications.


Asunto(s)
Carbono , Nanopartículas de Magnetita , Humanos , Carbono/química , Nanopartículas de Magnetita/química , Catecoles , Agua
7.
Environ Res ; 219: 115053, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521542

RESUMEN

In this study, pure cobalt oxide (Co3O4) as well as nickel cobaltite (NiCo2O4) were investigated with their capacity of degradation efficiency for textile dyes like methyl orange (MO) employing visible light irradiation. Two variable concentrations of nickel cobaltite (NiCo2O4) with 75:25 and 50:50 wt ratios along with the pure metal oxides were synthesized by thermal decomposition method and analyzed by various sophisticated instruments. Initially, the structural characteristics described the fine crystalline nature of NiCo2O4 and also exhibits reduced size than the pure component material (Co3O4). Besides, NiCo2O4 catalysts represented nano cubic shaped particles, and also their coordinating functional groups were evaluated. Further, the absorption wavelength confirms the two band positions of NiCo2O4 which leads to promote visible light absorption, and degrading efficiency of about 47.5% for NiCo2O4 (75:25) sample compared with NiCo2O4 (50:50) which produced only 26.3% degradation. This higher efficiency of the former was due to high crystallinity and interfacial charge transfer of combined Ni2+, Ni3+, Co2+ and Co3+ redox couples. This consecutively produces effective OH radicals that brought the degradation effectively under visible light. The recycling capacity up to 5 repeated cycles has been studied with the NiCo2O4 (75:25) and therefore the catalyst can further be used in other dye degradation.


Asunto(s)
Luz , Níquel
8.
Chemosphere ; 312(Pt 2): 137311, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36410501

RESUMEN

In this study, cubic spinel structured CuCo2O4 (Copper cobaltite) nanospheres were fabricated by thermal decomposition method. The visible light degradation of organic contaminant methyl orange (MO) was focused in this study using the synthesized pure CuO, Co3O4 and CuCo2O4 with different weight ratios of raw materials (90:10, 75:25 and 50:50). It could be well realized that after the characterization techniques, the synthesized CuCo2O4 materials resembled cubic spinel structure as confirmed by X-ray diffraction (XRD) investigation. Meanwhile, all the synthesized materials through transmission electron microscopy (TEM) have showed cubic shaped particles and among the CuCo2O4 materials, CuCo2O4 (50:50) expressed not as much of crystallinity due to the agglomerated nanospheres. On the other hand, well crystalline CuCo2O4 (75:25) displayed higher surface area than the other materials when analysed through Brunauer-Emmett-Teller (BET) method. The Fourier transform infra-red (FTIR) spectrum has evinced the formation of CuCo2O4 nanostructures. In addition, the cubic spinel structured CuCo2O4 provided positive results over visible light irradiation. Finally, the CuCo2O4 (75:25) sample has scored high as much of 85% MO degradation compared with others. This sample was progressed with repetitive recycling tests and presented the best photocatalytic degradation efficiency. The upgraded results of CuCo2O4 sample have been linked with the developed synergistic effects during the formation of binary metal oxides. Also, the interfacial electron-hole formation leads to the migration and hindering of charge carriers for visible light activity.


Asunto(s)
Cobre
9.
Environ Res ; 215(Pt 3): 114427, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179884

RESUMEN

The capacity to generate a constant signal response from an enzyme on an electrode surface has been a fascinating topic of research from the past three decades. To nourish the enzymatic activity during electrochemical reactions, the immobilization of dual enzymes on the electrode surface could prevent the enzymatic loss without denaturation and thus long-term stability can be achieved. For effective immobilization of dual enzymes, mesoporous materials are the ideal choice because of its numerous advantages such as 1. The presence of porous structure facilitates high loading of enzymes 2. The formation of protective environment can withstand the enzymatic activity even at acidic or basic pH values and even at elevated temperatures. Herein, we develop bienzymatic immobilization of horseradish peroxidase (HRP) and cholesterol oxidase (ChOx) on mesoporous V2O5-TiO2 based binary nanocomposite for effective sensing of hydrogen peroxide (H2O2) in presence of redox mediator hydroquinone (HQ). The utilization of redox mediator in second-generation biosensing of H2O2 can eliminate the interference species and reduces the operating potential with higher current density for electrochemical reduction reaction. Using this mediator transfer process approach at HRP/ChOx/V2O5-TiO2 modified GC, the H2O2 can be determined at operating potential (-0.2 V) with good linear range (0.05-3.5 mM) higher sensitivity (1040 µAµM-1 cm-2) and lower detection limit of about 20 µM can be attained, which is due to higher mediation of electrons were transferred to the enzyme cofactors. These interesting characteristics could be due to mesoporous structure of V2O5-TiO2 can induce large immobilization and facilitate higher interaction with enzymes for wide range of biosensing applications.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Colesterol Oxidasa , Coenzimas , Enzimas Inmovilizadas/química , Peroxidasa de Rábano Silvestre/química , Peróxido de Hidrógeno/química , Hidroquinonas , Titanio
10.
Chemosphere ; 308(Pt 3): 136528, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36165839

RESUMEN

The far-reaching technology of semiconductors in treating water pollutants reduces serious health hazards to humans and other eco-systems. With this interpretation, this work is attempted for the first time to synthesize nanosized pristine NiO and ZnO materials, and NiO/ZnO (70:30, 50:50) composites by co-precipitation method. The synthesized materials were then portrayed for their properties using various instrumental techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectrum (EDXS), Fourier transform Infrared spectrum (FT-IR). The main approach of this work is connected with the ultra violet (UV) photocatalytic degradation of MO (methyl orange) by employing the synthesized nanomaterials as catalysts. In view of results, the photocatalytic degradation of NiO/ZnO (70:30) has reported the greatest efficiency than the other catalysts. This outcome lies with the consideration of higher content of NiO present in the composite than ZnO. Further, there was the existence of higher surface area analysed from the BET result. Also, the NiO/ZnO (50:50) sample showed lower degradation efficiency in terms of formed agglomeration when surveyed through TEM. Besides, the positive mechanism of photocatalysis reaction forms the essential hydroxyl radicals which correspond to MO degradation. Moreover, the highly efficient NiO/ZnO (70:30) sample has been trialled for photocatalytic repetition process to observe the stability of degradation. It has accounted with good efficiency for 5 repeated cycles. Finally for UV degradation, the recognized photocatalytic aspect was due to the surface morphology enhanced surface area, synergistic effects of metal oxides and electron-hole charge separation.


Asunto(s)
Contaminantes del Agua , Óxido de Zinc , Compuestos Azo , Catálisis , Humanos , Óxidos , Espectroscopía Infrarroja por Transformada de Fourier
11.
Chemosphere ; 307(Pt 4): 135957, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35985378

RESUMEN

Globally, ecotoxicologists, environmental biologists, biochemists, pathologists, and other experts are concerned about environmental contamination. Numerous pollutants, such as harmful heavy metals and emerging hazardous chemicals, are pervasive sources of water pollution. Water pollution and sustainable development have several eradication strategies proposed and used. Biosorption is a low-cost, easy-to-use, profitable, and efficient method of removing pollutants from water resources. Microorganisms are effective biosorbents, and their biosorption efficacy varies based on several aspects, such as ambient factors, sorbing materials, and metals to be removed. Microbial culture survival is also important. Biofilm agglomerates play an important function in metal uptake by extracellular polymeric molecules from water resources. This study investigates the occurrence of heavy metals, their removal by biosorption techniques, and the influence of variables such as those indicated above on biosorption performance. Ion exchange, complexation, precipitation, and physical adsorption are all components of biosorption. Between 20 and 35 °C is the optimal temperature range for biosorption efficiency from water resources. Utilizing living microorganisms that interact with the active functional groups found in the water contaminants might increase biosorption efficiency. This article discusses the negative impacts of microorganisms on living things and provides an outline of how they affect the elimination of heavy metals.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Adsorción , Biodegradación Ambiental , Biomasa , Contaminantes Ambientales/química , Sustancias Peligrosas , Metales Pesados/química , Agua
12.
Chemosphere ; 308(Pt 1): 136161, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36029864

RESUMEN

In recent times, there has been an inspired research on combining semiconducting metal oxides for improved industrial applications. Significantly, wastewater removal is concerned and the researchers are finding new methodologies for removing azo dyes that possess a high level of carcinogenic effects. In this connection, this work investigates the photocatalytic activity of synthesized TiO2/ZnO nanocomposite irradiated under UV and visible light. The application of the work involves the removal of methylene blue (MB) dye solution. Initial work begins with the novel synthesis of TiO2/ZnO coupled system by integrated sol-gel and thermal decomposition methods. Then, various characterization techniques brought out the existing properties of the prepared TiO2/ZnO catalyst. The X-ray diffraction measurements showed the assorted tetragonal and hexagonal structures. The spherical shape mixed with hexagonal shaped particles were perceived via transmission electron microscopy (TEM). Besides, from photoluminescence spectrum (PL) results, the TiO2/ZnO coupled system displayed slowing down of charge recombination, because of the intermediate states that helps in intensifying the photocatalytic activity. The dual absorption bands corresponding to UV region were deep-rooted from UV-vis spectroscopy. Further, the valuable application of the catalyst in removing methylene blue (MB) dye under both UV and visible light was carried out. The catalyst had displayed 90% of degradation within 40 min under UV light conditions. The other hand, visible light illumination of the catalyst provides divergent results as it possess lesser light absorption. Therefore, this catalyst was unable to yield visible light photocatalytic activity. Hence, this captivating research would bring the wastewater treatment progression using UV light.


Asunto(s)
Contaminantes Ambientales , Óxido de Zinc , Compuestos Azo/química , Azul de Metileno/química , Óxidos , Titanio , Aguas Residuales/química , Óxido de Zinc/química
13.
Environ Res ; 214(Pt 3): 113961, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35932831

RESUMEN

In this research work, focus has been made on a glassy carbon electrode (GCE) modified commercial micro and synthesized nano-CeO2 for the detection of hydrogen peroxide (H2O2). Firstly, CeO2 nanoleaves were prepared by solvothermal route. Both commercially available micro CeO2 and synthesized nano-CeO2 structures were analyzed by different characterization techniques. The Raman spectra of synthesized nano CeO2 has more oxygen vacancies than micro CeO2. SEM images revealed that the synthesized CeO2 acquired leaf-like morphology. The catalyst nano CeO2 offered mesoporosity from nitrogen adsorption-desorption isotherms with massive sites of activation for increasing efficiency. Experiments on determining H2O2 using micro CeO2 or nano-CeO2/GCE was conducted using cyclic voltammetry (CV) and amperometry. Enhanced H2O2 reduction peak current with lower potential was observed in nano-CeO2/GCE. The influence of scan rate and H2O2 concentration on the performance of nano-CeO2/GCE were also studied. The obtained results have indicated that nano-CeO2/GCE showed improved electrochemical sensing behavior towards the reduction of H2O2 than micro-CeO2/GCE and bare GCE. A linear relationship was obtained over 0.001 µM-0.125 µM concentration of H2O2, with good sensitivity 141.96 µA µM-1 and low detection limit of 0.4 nM. Hence, the present nano-CeO2 system will have a great potential with solvothermal synthesis approach in the development of electrochemical sensors.


Asunto(s)
Peróxido de Hidrógeno , Nanoporos , Carbono/química , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección
14.
Food Chem Toxicol ; 167: 113277, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35803363

RESUMEN

In recent days, the existence of several food colorants has an impact on human health issue that may induce major carcinogenic effects. Therefore, the removal of food colorants must be made in accordance with the necessity of health awareness in life. Photocatalyst treatment using semiconductors shows a promising way to solve these issues. In this relation, this paper presents the novel nanoflower shaped NiO/CuO (0.9:0.1 M and 0.5:0.5 M) photocatalysts developed via co-precipitation method for the destruction of methyl orange (MO) as a model food colorant under visible light irradiation. The X-ray diffraction result proposed that the composite catalysts consist of mixed heterostructures (cubic and monoclinic) with no other impurities. From the images of transmission electron microscope, the catalyst presents nano spherical and cubical mixed morphologies. Besides, NiO/CuO (0.5:0.5 M) catalyst exhibits agglomeration due to the highly contented CuO. The Energy Dispersive X-ray spectra gave the elemental configuration without other impurity traces. The Brunauer-Emmett-Teller surface area of NiO/CuO (0.9:0.1 M) catalyst occupies higher surface area. Unfortunately, NiO/CuO (0.5:0.5 M) sample has lower surface area due to the agglomerated particles. The UV-vis spectra confirmed that the absorption of the catalyst lies in higher wavelength region occupying small band gap. Moreover, the visible light activity of the catalysts showed 75.3% (0.9:0.1 M) and 40.2% (0.5:0.5 M) degrading efficiencies. At the end, the highly efficient catalyst was experienced photocatalytic activity upto 5 repeated runs and the efficiency remained the same. Therefore, the catalyst NiO/CuO (0.9:0.1 M) has prompted the successful degradation of MO food colorant under visible light.


Asunto(s)
Colorantes de Alimentos , Nanoestructuras , Catálisis , Cobre/química , Humanos
15.
Environ Res ; 214(Pt 2): 113889, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35843276

RESUMEN

This study addresses the significance of wastewater recuperation by a simple and facile treatment process known as photocatalyst technology using visible light. Titanium di-oxide (TiO2) is the most promising photocatalyst ever since longing decades, has good activity under UV light, owing to its small band gap. Hence, TiO2 has been modified with metal oxides for the positive response against visible light. Since this is an efficient process, the novelty has been made on nanometal oxide CdO (cadmium oxide) combined with TiO2 to acquire the best efficiency of degrading organic chlorophenol contaminant. Initially, the composites were synthesized by sol-gel and thermal decomposition methods and investigated for their various outstanding properties. The characterized outcomes have exhibited heterostructures with reduced crystallite size from the X-ray diffraction studies. Then, the determination of nanoporous feature was recognized through HR-TEM analysis which was also detected with some dislocations. The EDX spectrum was identified the perfect elemental composition. The nitrogen adsorption-desorption equilibrium was attained that offers many pores measured with high surface area. The XPS result convinced that Ti3+ was accessible along with TIO2/CdO composite. Further the absorption towards higher wavelength was obtained from UV-vis spectra. Finally, for the photocatalytic application of chlorophenol, the composite shows higher percentage of degrading efficiencies than the pristine TiO2. The photocatalytic mechanism was discussed in detail.


Asunto(s)
Clorofenoles , Contaminantes Ambientales , Nanoporos , Catálisis , Clorofenoles/química , Óxidos/química , Titanio/química
16.
Food Chem Toxicol ; 165: 113182, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643232

RESUMEN

Enhancing the current signal response for semiconductors is the key factor for designing and fabrication of efficient electrode in electrochemical sensors. By the aid of doping with binary metal oxides, the conductivity of the resultant titanium oxide (TiO2) based nanocomposite will deliver fast electron transfer rate at the heterojunction interface. Herein, by taking advantage of mesoporous structure in TiO2, cubic shaped multivalent cerium oxide (CeO2) was incorporated into the porous cavity by simple ground assisted solvothermal process, which resulted in enormous enhancement in the current response towards detection of 2-aminophenol. The advantage of CeO2 on TiO2 not only involves the loading of binary metal oxide on its mesoporous sites, but also facilitates the formation of CeO2 nanocrystals which induce larger surface area and high electroactive sites with rapid diffusion of target species through pores. As a result, CeO2-TiO2 on modified GC electrode exhibits drastic enhancement in the current response for oxidation of 2-aminophenol with large decrease in the onset potential than TiO2/GC electrode. Furthermore, the CeO2-TiO2 modified electrode shows significant behavior for sensing of 2-aminophenol with wide linear range of 0.01-500 µM. The sensitivity and detection limit were calculated to be 0.603 µA µM cm-2 and 3.5 nM respectively. This work establishes the facile strategy for decoration of binary metal oxide-based nanocomposites as effective electrode and also possible to create new opportunities in the designing and fabrication of variety of efficient electrode in various electrochemical applications.


Asunto(s)
Nanopartículas del Metal , Titanio , Aminofenoles , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Óxidos/química , Titanio/química
17.
Chemosphere ; 303(Pt 3): 135205, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35667502

RESUMEN

When it comes to electrocatalysis, the creation of nanodevices, the research of energy and the environment, and diagnostics, nanoporous materials are an asset. Nanoporous membranes, which can be used to filter water, have recently been the subject of new research and are summarized in this review. These membranes are used to remove salts and metallic ions from the water following an analysis of several nanoporous membrane types and production procedures. Demonstrations and discussions of these membrane systems are then conducted. Nanoporous membranes can be used to filter water, according to the conclusions of this study, which will help readers better grasp how they work. As a result, novel water purification nanoporous compounds that are easy to manufacture, inexpensive, and effective will be developed. Merits and demerits of nanoporous membrane for water treatment and its advancements in purification were discussed.


Asunto(s)
Nanoporos , Purificación del Agua , Iones , Membranas , Membranas Artificiales , Purificación del Agua/métodos
18.
Chemosphere ; 305: 135375, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35738200

RESUMEN

Microalgae-based wastewater treatment has previously been carried out in huge waste stabilization ponds. Microalgae, which can absorb carbon dioxide while reusing nutrients from sewage, has recently emerged as a new trend in the wastewater treatment business. Microalgae farming is thought to be a potential match for the modern world's energy strategy, which emphasizes low-cost and environmentally benign alternatives. Microalgae are being used to treat wastewater and make useful products. Microalgae, for example, is a promising renewable resource for producing biomass from wastewater nutrients because of its quick growth rate, short life span, and high carbon dioxide utilization efficacy. Microalgae-based bioremediation has grown in importance in the treatment of numerous types of wastewater in recent years. This solar-powered wastewater treatment technology has huge potential. However, there are still issues to be resolved in terms of land requirements, as well as the process's ecological feasibility and long-term viability, before these systems can be widely adopted. Due to cost and the need for a faultless downstream process, it is difficult to deploy this technology on a large scale. Other recent breakthroughs in wastewater microalgae farming have been investigated, such as how varied pressures affect microalgae growth and quality, as well as the number of high-value components produced. In this review, the future of this biotechnology has also been examined.


Asunto(s)
Metales Pesados , Microalgas , Biocombustibles , Biomasa , Dióxido de Carbono , Aguas Residuales
19.
Chemosphere ; 302: 134933, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35561780

RESUMEN

In the search of the viable candidate for the sensing of pollutant gases, two-dimensional (2D) material transition metal carbides (MXenes) have attracted immense attention due to their outstanding physical and chemical properties for sensing purposes. The formation of unique 2D layered structure with high conductivity, large mechanical strength, and high adsorption properties furnish their strong interactions with gaseous molecules, which holds a promising place for developing ideal gas sensing devices. This review looks at recent achievements in diversified MXenes, with a focus gaining on in-depth understanding of MXene-based materials in room temperature inorganic gas sensors through both theoretical and experimental studies. In the first part of the review, the properties and advantages of sensing material (MXene) in comparison with other 2D materials are discussed. In the second part, the unique advantages of chemiresistive based sensors and the demerits of other detection methods are summarized in detail. This section is followed by the unique structural design of MXene bases materials for improving the sensing performance towards detection of inorganic gases. The interaction between MXene and the adsorbed gases on its surface is discussed, with a possible sensing mechanism. Finally, an overview of the current progress and opportunities for the demand of MXene is emphasized and perspectives for future improvement of the design of MXene in gas sensors are highlighted. Therefore, this review highlights the opportunities and the advancement in 2D material-based gas sensors which could provide a new avenue for rapid detection of toxic gases in the environment.


Asunto(s)
Nanocompuestos , Elementos de Transición , Adsorción , Gases , Nanocompuestos/química , Elementos de Transición/química
20.
Food Chem Toxicol ; 165: 113169, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35618108

RESUMEN

The sensing of food contaminants is essential to prevent their adverse health effects on the consumers. Electrochemical sensors are promising in the determination of electroactive analytes including food pollutants, biomolecules etc. Graphene nanomaterials offer many benefits as electrode material in a sensing device. To further improve the analytical performance, doped graphene or derivatives of graphene such as reduced graphene oxide and their nanocomposites were explored as electrode materials. Herein, the advancements in graphene and its derivatives-based electrochemical sensors for analysis of food pollutants were summarized. Determinations of both organic (food colourants, pesticides, drugs, etc.) and inorganic pollutants (metal cations and anions) were considered. The influencing factors including nature of electrode materials and food pollutants, pH, electroactive surface area etc., on the sensing performances of modified electrodes were highlighted. The results of pollutant detection in food samples by the graphene-based electrode have also been outlined. Lastly, conclusions and current challenges in effective real sample detection were presented.


Asunto(s)
Contaminantes Ambientales , Grafito , Nanocompuestos , Técnicas Electroquímicas/métodos , Electrodos , Grafito/química , Metales , Nanocompuestos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...