Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(46): 7745-7765, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37798130

RESUMEN

Proper cortical lamination is essential for cognition, learning, and memory. Within the somatosensory cortex, pyramidal excitatory neurons elaborate axon collateral branches in a laminar-specific manner that dictates synaptic partners and overall circuit organization. Here, we leverage both male and female mouse models, single-cell labeling and imaging approaches to identify intrinsic regulators of laminar-specific collateral, also termed interstitial, axon branching. We developed new approaches for the robust, sparse, labeling of Layer II/III pyramidal neurons to obtain single-cell quantitative assessment of axon branch morphologies. We combined these approaches with cell-autonomous loss-of-function (LOF) and overexpression (OE) manipulations in an in vivo candidate screen to identify regulators of cortical neuron axon branch lamination. We identify a role for the cytoskeletal binding protein drebrin (Dbn1) in regulating Layer II/III cortical projection neuron (CPN) collateral axon branching in vitro LOF experiments show that Dbn1 is necessary to suppress the elongation of Layer II/III CPN collateral axon branches within Layer IV, where axon branching by Layer II/III CPNs is normally absent. Conversely, Dbn1 OE produces excess short axonal protrusions reminiscent of nascent axon collaterals that fail to elongate. Structure-function analyses implicate Dbn1S142 phosphorylation and Dbn1 protein domains known to mediate F-actin bundling and microtubule (MT) coupling as necessary for collateral branch initiation upon Dbn1 OE. Taken together, these results contribute to our understanding of the molecular mechanisms that regulate collateral axon branching in excitatory CPNs, a key process in the elaboration of neocortical circuit formation.SIGNIFICANCE STATEMENT Laminar-specific axon targeting is essential for cortical circuit formation. Here, we show that the cytoskeletal protein drebrin (Dbn1) regulates excitatory Layer II/III cortical projection neuron (CPN) collateral axon branching, lending insight into the molecular mechanisms that underlie neocortical laminar-specific innervation. To identify branching patterns of single cortical neurons in vivo, we have developed tools that allow us to obtain detailed images of individual CPN morphologies throughout postnatal development and to manipulate gene expression in these same neurons. Our results showing that Dbn1 regulates CPN interstitial axon branching both in vivo and in vitro may aid in our understanding of how aberrant cortical neuron morphology contributes to dysfunctions observed in autism spectrum disorder and epilepsy.


Asunto(s)
Trastorno del Espectro Autista , Neuropéptidos , Animales , Femenino , Masculino , Ratones , Trastorno del Espectro Autista/metabolismo , Axones/fisiología , Proteínas del Citoesqueleto/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo
2.
Biol Reprod ; 99(2): 293-307, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408993

RESUMEN

Although the histone methyltransferase EZH2 and its product H3K27me3 are well studied in cancer, little is known about their role and potential as therapeutic targets in endometriosis. We have previously reported that endometriotic lesions are characterized by global enrichment of H3K27me3. Therefore, we aimed to (1) characterize the expression levels of EZH2 in endometriotic tissues; (2) assess H3K27me3 enrichment in candidate genes promoter regions; and (3) determine if pharmacological inhibition of EZH2 impacts migration, proliferation, and invasion of endometriotic cells. Immunohistochemistry of an endometriosis-focused tissue microarray was used to assess the EZH2 protein levels in tissues. Chromatin immunoprecipitation-qPCR was conducted to assess enrichment of H3K27me3 in candidate gene promoter regions in tissues. Immunofluorescence was performed to assess the effect of an EZH2-specific pharmacological inhibitor on H3K27me3 global enrichment in cell lines. To measure effects of the inhibitor in migration, proliferation, and invasion in vitro we used Scratch, BrdU, and Matrigel assays, respectively. Endometriotic lesions had significantly higher EZH2α nuclear immunostaining levels compared to eutopic endometrium from patients (glands, stroma) and controls (glands). H3K27me3 was enriched within promoter regions of candidate genes in some but not all of the endometriotic lesions. Inhibition of EZH2 reduced H3K27me3 levels in the endometriotic cells specifically, and also reduced migration, proliferation but not invasion of endometriotic epithelial cells (12Z). These findings support future preclinical studies to determine in vivo efficacy of EZH2 inhibitors as promising nonhormonal treatments for endometriosis, still an incurable gynecological disease.


Asunto(s)
Endometriosis/metabolismo , Endometrio/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Adulto , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Endometriosis/patología , Endometrio/metabolismo , Endometrio/patología , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Indazoles/farmacología , Persona de Mediana Edad , Piridonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...