Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 671: 124-133, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38795533

RESUMEN

HYPOTHESIS: Amphiphilic diblock copolymers are known to increase the surfactant's efficiency to stabilize microemulsion, leading to higher structural order and monolayer rigidity. We thus seek to evaluate whether the addition of such polymers alters the shear behavior of bicontinuous microemulsions, in particular, their shear transformation towards lamellar structures. EXPERIMENTS: We examine the initial structure and shear response of bicontinuous /n-octane//PEP5-b-PEO5 microemulsions by coupling microfluidics with small-angle neutron scattering (SANS), attaining wall shear rates in excess of . The azimuthal analysis of the obtained 2D scattering patterns allows us to follow their structural transformation by means of the degree of anisotropy. FINDINGS: The amphiphilic diblock copolymer promotes the shear-induced transformation of bicontinuous microemulsions, resulting in up to ∼ higher degrees of anisotropy than for corresponding polymer-free microemulsions. The increased shear response observed with increasing polymer content is rationalized by combining the influence of domain size and viscosity with the stability limits of the bicontinuous microemulsion in the isothermal phase diagram. As a result, a consistent description of the degree of anisotropy is obtained, enabling the prediction of the shear-induced bicontinuous-to-lamellar transformation.

2.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570497

RESUMEN

ZnO inverse opals combine the outstanding properties of the semiconductor ZnO with the high surface area of the open-porous framework, making them valuable photonic and catalysis support materials. One route to produce inverse opals is to mineralize the voids of close-packed polymer nanoparticle templates by chemical bath deposition (CBD) using a ZnO precursor solution, followed by template removal. To ensure synthesis control, the formation and growth of ZnO nanoparticles in a precursor solution containing the organic additive polyvinylpyrrolidone (PVP) was investigated by in situ ultra-small- and small-angle X-ray scattering (USAXS/SAXS). Before that, we studied the precursor solution by in-house SAXS at T = 25 °C, revealing the presence of a PVP network with semiflexible chain behavior. Heating the precursor solution to 58 °C or 63 °C initiates the formation of small ZnO nanoparticles that cluster together, as shown by complementary transmission electron microscopy images (TEM) taken after synthesis. The underlying kinetics of this process could be deciphered by quantitatively analyzing the USAXS/SAXS data considering the scattering contributions of particles, clusters, and the PVP network. A nearly quantitative description of both the nucleation and growth period could be achieved using the two-step Finke-Watzky model with slow, continuous nucleation followed by autocatalytic growth.

3.
Soft Matter ; 19(37): 7070-7083, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37492886

RESUMEN

Coupling microfluidics and small-angle neutron scattering (SANS), we investigate the influence of shear flow on a model bicontinuous microemulsion of D2O/n-octane/C10E4, examining the role of membrane volume fraction in the transformation towards a lamellar structure. We employ a contraction-expansion geometry with flow velocities in excess of 10 m s-1 and spatially map the microfluidic field using a small SANS beam, illuminating down to 10 nL sample volumes. The shear-induced, progressive, bicontinuous-to-lamellar transition is found to be promoted by additional extensional flow (>103 s-1), while fast relaxation kinetics (<2 ms) return the scattering pattern to isotropic shortly after the constriction. Further, increasing the domain size of the bicontinuous structure (determined by the membrane volume fraction) appears to amplify its response to shear. Hence, the structural changes within the dilute bicontinuous microemulsions simply scale with the volume fraction of the membrane. By contrast, the stronger response of the microemulsion with the smallest domain size, located near the bicontinuous/lamellar coexistence, indicates an influence of an already more ordered structure with fewer passages. Our findings provide insight into the high shear behaviour of microemulsions of both academic and industrial relevance.

4.
J Colloid Interface Sci ; 635: 588-597, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36610202

RESUMEN

HYPOTHESIS: Shear flow applied to bicontinuous microemulsions is expected to induce a transition to lamellae via the suppression of surfactant monolayer fluctuations. Compared to the topologically analogous L3 (sponge) phase, composed of surfactant bilayers, this transition is likely to occur at much higher shear rates. EXPERIMENTS: We examine the flow response of a model bicontinuous microemulsion, D2O/n-octane/C10E4 by coupling microfluidics with small-angle neutron scattering (SANS), attaining wall shear rates in excess of 105 s-1. The reduction of probed sample volumes down to ∼10 nL allows the spatial mapping of the structural and orientation changes within the microchannel, as a function of the flow field components. FINDINGS: With increasing flow rate, we observe a gradual increase in scattering anisotropy, accompanied by a decrease of the microemulsion domain size along the main flow orientation. A consistent description of the degree of anisotropy was obtained when considering the velocity gradient along the scattering plane perpendicular to the flow. We discuss the flow dependence of the effective bending rigidity, rationalizing a strong influence of shear on thermal membrane fluctuations. Assuming a similar shear dependence for the saddle splay modulus, the bicontinuous-to-lamellar transition can be attributed to the gradual disappearance of inter-lamellar passages.

5.
Soft Matter ; 18(40): 7773-7781, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36177986

RESUMEN

Aiming at a new type of salt-free CASAIL (Catanionic Surface Active IL) for electrochemical applications or emulsifiers, dispersants, and foaming or antifoaming agents, we combined mesogenic anions (carboxylate) and cations (imidazolium) of similar shape and size to synthesize a series of congruent ion pairs of 1-alkyl-3-methylimidazolium alkylcarboxylates [Cnmim][Cm-1COO] (n = 10-16, m = 10-16). With particular focus on alkyl chain length varieties in both, imidazolium cations and carboxylate anions (n/m), the self-assembly in the bulk phase and in solution was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD) experiments and surface tension measurements. Our results revealed that the presence of long alkyl chains on both the cation n and anion m leads to improved thermal stability of the bulk material while maintaining broad lamellar (SmA) mesophases. In water, we observed a strong and linear decrease of log(cmc) for increasing both the carboxylate anion and imidazolium cation chain length due to the increasing hydrophobic effect. Surprisingly, for both thermotropic behavior and micellization, the chain length of the carboxylate anion had a stronger impact than the chain length of the imidazolium cation, indicating its greater surface activity and tendency to form micelles.

6.
Chemistry ; 27(68): 16853-16870, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34664324

RESUMEN

Microemulsions provide a unique opportunity to tailor the polarity and liquid confinement in asymmetric catalysis via nanoscale polar and nonpolar domains separated by a surfactant film. For chiral diene Rh complexes, the influence of counterion and surfactant film on the catalytic activity and enantioselectivity remained elusive. To explore this issue chiral norbornadiene Rh(X) complexes (X=OTf, OTs, OAc, PO2 F2 ) were synthesized and characterized by X-ray crystallography and theoretical calculations. These complexes were used in Rh-catalyzed 1,2-additions of phenylboroxine to N-tosylimine in microemulsions stabilized either exclusively by n-octyl-ß-D-glucopyranoside (C8 G1 ) or a C8 G1 -film doped with anionic or cationic surfactants (AOT, SDS and DTAB). The Rh(OAc) complex showed the largest dependence on the composition of the microemulsion, yielding up to 59 % (90 %ee) for the surfactant film doped with 5 wt% of AOT as compared to 52 % (58 %ee) for neat C8 G1 at constant surfactant concentration. Larger domains, determined by SAXS analysis, enabled further increase in yield and selectivity while the reaction rate almost remained constant according to kinetic studies.

7.
Phys Chem Chem Phys ; 23(31): 16855-16867, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34328162

RESUMEN

Gelled non-toxic microemulsions have great potential in transdermal drug delivery: the microemulsion provides an optimum solubilizing capacity for drugs and promotes drug permeation through the skin barrier, while the gel network provides mechanical stability. We have formulated such a gelled non-toxic microemulsion consisting of H2O - isopropyl myristate (IPM) - Plantacare 1200 UP (technical-grade alkyl polyglucoside with an average composition of C12G1.4) - 1,2-octanediol in the presence of the low molecular weight gelator (LMWG) 1,3:2,4-dibenzylidene-d-sorbitol (DBS) at an oil-to-water ratio of φ = 0.50. The study at hand aimed to develop gelled non-toxic microemulsions that can contain both oil- and water-soluble drugs and are either water- or oil-based, depending on the application. To accomplish this, we varied the oil-to-water ratio from being water-rich to oil-rich, i.e. 0.2 ≤ φ ≤ 0.8. Phase studies were carried out along the middle phase trajectory, and a suitable LMWG was identified for all φ-ratios. Electrical conductivity measurements showed that the structure can be tuned from water- to oil-continuous by adjusting the amount of 1,2-octanediol and φ-ratios. The existence of the gel network was visualized by freeze-fracture electron microscopy (FFEM) at three different φ-ratios. We found that all systems from φ = 0.35 to φ = 0.80 form strong gels with nearly the same rheological behavior, while the system with φ = 0.20 is a much weaker gel. We attribute this behavior on the one hand to the microemulsion microstructure and on the other hand to the solvent-dependent gelation properties of DBS, which can be described by the Hansen solubility parameters (HSPs).

8.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466679

RESUMEN

Oxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied. In order to address these two problems, we synthesized ZnO IOs films with tunable pore sizes using chemical bath deposition and template-based approach. By decreasing the size of polystyrene (PS) template particles towards the mesoporous range, ZnO IOs with 50 nm-sized pores and open porosity were synthesized. The effect of the template-removal method on the pore geometry (spherical vs. gyroidal) was studied. The infiltration depth in the template was determined, and the factors influencing infiltration were assessed. The crystallinity and photonic stop-band of the IOs were studied using X-Ray diffraction and UV-Vis, respectively. The infiltration of tracer molecules (Alexa Fluor 488) in multilayered quasi-mesoporous ZnO IOs was confirmed via confocal laser scanning microscopy, while fluorescence correlation spectroscopy analysis revealed two distinct diffusion times in IOs assigned to diffusion through the pores (fast) and adsorption on the pore walls (slow).

9.
Soft Matter ; 16(45): 10268-10279, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33026039

RESUMEN

In this work we present a systematic study on the microstructure of soft materials which combine the anisotropy of lyotropic liquid crystals with the mechanical stability of a physical gel. Systematic small-angle neutron (SANS) and X-ray (SAXS) scattering experiments were successfully used to characterize the lyotropic lamellar phase (Lα) of the system D2O -n-decanol - SDS which was gelled by two low molecular weight organogelators, 1,3:2,4-dibenzylidene-d-sorbitol (DBS) and 12-hydroxyoctadecanoic acid (12-HOA). Surprisingly, a pronounced shoulder appeared in the scattering curves of the lamellar phase gelled with 12-HOA, whereas the curves of the DBS-gelled Lα phase remained almost unchanged compared to the ones of the gelator-free Lα phase. The appearance of this additional shoulder strongly indicates the formation of a synergistic structure, which neither exists in the gelator-free Lα phase nor in the isotropic binary gel. By comparing the thicknesses of the 12-HOA (25-30 nm) and DBS (4-8 nm) gel fibers with the lamellar repeat distance (7.5 nm), we suggest that the synergistic structure originates from the minimization of the elastic free energy of the lamellar phase. In the case of 12-HOA, where the fiber diameter is significantly larger than the lamellar repeat distance, energetically unfavored layer ends can be prevented, when the layers cylindrically enclose the gel fibers. Interestingly, such structures mimic similar schemes found in neural cells, where axons are surrounded by lamellar myelin sheets.

10.
Langmuir ; 36(42): 12692-12701, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33064496

RESUMEN

Gelled non-toxic bicontinuous microemulsions have a great potential for transdermal drug delivery as the microemulsion facilitates the solubilization of both hydrophilic and hydrophobic drugs, while the gel network provides mechanical stability and thus an easy application on the skin. In our previous study, we formulated a gelled non-toxic bicontinuous microemulsion: we gelled the system H2O-isopropyl myristate (IPM)-Plantacare 1200 UP (C12G1.4)-1,2-octanediol with the low molecular weight organogelator 1,3:2,4-dibenzylidene-d-sorbitol (DBS). However, a large amount of Plantacare 1200 UP (12 wt %) is needed to form a bicontinuous microemulsion. To solve this problem, we studied a new class of surfactants, namely, alkanoyl methylglucamides (MEGA), which have been rarely used for the formulation of microemulsions. The phase behavior of microemulsions stabilized by MEGA-8/10, MEGA-12/14-PC, and MEGA-12/14-HC was compared with that of systems stabilized by alkyl polyglucosides. We found that even with 2 wt % MEGA-12/14-HC, a bicontinuous microemulsion can be formed, which is 1/6 of the amount of Plantacare 1200 UP. The bicontinuous microstructure of the non-toxic microemulsion H2O-IPM-MEGA-12/14-HC-1,2-octanediol was confirmed by small-angle neutron scattering. Furthermore, the phase boundaries remained unchanged when gelled by DBS. The rheological properties of the gel were studied by oscillatory shear rheometry. Finally, freeze-fracture electron microscopy images show the coexistence of gel fibers and bicontinuous oil and water domains. These results suggest that the new gelled non-toxic bicontinuous microemulsion is an orthogonal self-assembled system.

11.
Proc Natl Acad Sci U S A ; 117(44): 27238-27244, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067393

RESUMEN

Recent measurements of the elastic constants in lyotropic chromonic liquid crystals (LCLCs) have revealed an anomalously small twist elastic constant compared to the splay and bend constants. Interestingly, measurements of the elastic constants in the micellar lyotropic liquid crystals (LLCs) that are formed by surfactants, by far the most ubiquitous and studied class of LLCs, are extremely rare and report only the ratios of elastic constants and do not include the twist elastic constant. By means of light scattering, this study presents absolute values of the elastic constants and their corresponding viscosities for the nematic phase of a standard LLC composed of disk-shaped micelles. Very different elastic moduli are found. While the splay elastic constant is in the typical range of 1.5 pN as is true in general for thermotropic nematics, the twist elastic constant is found to be one order of magnitude smaller (0.30 pN) and almost two orders of magnitude smaller than the bend elastic constant (21 pN). These results demonstrate that a small twist elastic constant is not restricted to the special case of LCLCs, but is true for LLCs in general. The reason for this extremely small twist elastic constant very likely originates with the flexibility of the assemblies that are the building blocks of both micellar and chromonic lyotropic liquid crystals.

12.
Langmuir ; 36(33): 9849-9866, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32689803

RESUMEN

Twenty years ago, it was found that adding small amounts of amphiphilic block copolymers like poly(ethylene propylene)-co-poly(ethylene oxide) (PEP-b-PEO) to microemulsion systems strongly increases the efficiency of medium-chain surfactants to solubilize water and oil. Although being predestined to serve as a milestone in microemulsion research, the effect has only scarcely found its way into applications. In this work, we propose new types of efficiency boosters, namely, poly(ethylene oxide)-poly(alkyl glycidyl ether carbonate)s (PEO-b-PAlkGE) and their "carbonated" poly(ethylene oxide)-poly(carbonate alkyl glycidyl ether) analogs. Their synthesis via anionic ring-opening polymerization (AROP) from commercially available long-chain alkyl glycidyl ethers (AlkGE) and monomethoxypoly(ethylene glycol)s as macroinitiators can be performed at low cost and on a large scale. We demonstrate that these new PEO-b-PAlkGE copolymers with dodecyl and hexadecyl side chains in the nonpolar block strongly increase the efficiency of both pure and technical-grade n-alkyl polyglycol ether surfactants to form microemulsions containing pure n-alkanes or even technical-grade waxes, a result that could be of interest for industrial applications where reduced surfactant needs would have significant economic and ecological implications. For n-decane microemulsions, the boosting effect of PEO-b-PAlkGE and PEP-b-PEO polymers can be scaled on top of each other, when plotting the efficiency semilogarithmically versus the polymeric coverage of the amphiphilic film. Interestingly, a somewhat different scaling behavior was observed for n-octacosane microemulsions at elevated temperatures, suggesting that the polymers show less self-avoidance and rather behave as almost ideal chains. A similar trend was found for the increase of the bending rigidity κ upon polymeric coverage of the amphiphilic film, which was obtained from the analysis of small-angle neutron scattering (SANS) measurements.

13.
Langmuir ; 35(51): 16793-16802, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31621334

RESUMEN

We present a systematical investigation of gelled lyotropic liquid crystals (LLCs). This new class of soft materials combines the anisotropy of LLCs with the mechanical stability of a physical gel. The studied LLC system consists of sodium dodecyl sulfate as a surfactant, n-decanol as a cosurfactant, and water as a solvent. At room temperature, four liquid crystalline phases (lamellar Lα, nematic Nd and Nc, and hexagonal H1) are formed depending on the composition. We were successful in gelling the lyotropic lamellar phase with the low-molecular-weight organogelator 12-hydroxyoctadecanoic acid (12-HOA). The obtained gelled lamellar phase shows optical birefringence, elastic response, and no macroscopic flow. However, we were not able to obtain gels with hexagonal or nematic structure. These findings can be explained twofold. When gelling the hexagonal phase, the long-range hexagonal order was destroyed and an isotropic gel was formed. The reason might be the incompatibility between the gel fiber network and the two-dimensional long-range translational order of the cylindrical micelles in the hexagonal phase. Otherwise, the lyotropic nematic phase was transformed into an anisotropic gel with the lamellar structure during gelation. Evidently, the addition of the gelator 12-HOA to the lyotropic system considerably widens the lamellar regime because the integration of the surface-active 12-HOA gelator molecules into the nematic micelles flattens out the micelle curvature. We further investigated the successfully gelated Lα phase to examine the impacts of the gel network and the remaining monomeric gelator on both the structure and properties of the gelled lamellar phase. Small-angle X-ray scattering results showed an arrested lamellar layer spacing in the gelled state, which indicates a higher translational order for the gelled lamellar phases in comparison with their gelator-free counterparts.

14.
Soft Matter ; 15(41): 8361-8371, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31583394

RESUMEN

Bicontinuous microemulsions gelled with a low molecular weight gelator have been shown to be an orthogonally self-assembled system. With the mechanical stability provided by the gel network, gelled non-toxic bicontinuous microemulsions have the potential to be an efficient transdermal drug delivery carrier. However, up to now no suitable system has been formulated for transdermal drug delivery. To fill this gap, we formulated and characterized a gelled non-toxic bicontinuous microemulsion suitable for the mentioned application. Starting from a previously studied scouting system, namely, H2O-n-octane-n-octyl ß-d-glucopyranoside (ß-C8G1)-1-octanol, the co-surfactant and the oil were replaced by non-toxic components. Subsequently, the expensive pure surfactant was replaced by cheap technical-grade surfactants (Plantacare® series) to make the system economical. Having formulated the non-toxic microemulsion H2O-IPM-Plantacare 1200 UP-1,2-octanediol, three low molecular weight gelators were studied with regard to the gelation of both the scouting system and the non-toxic system. The chosen gelators were 12-hydroxyoctadecanoic acid (12-HOA), 1,3:2,4-dibenzylidene-d-sorbitol (DBS), and N,N'-dibenzoyl-l-cystine (DBC). We found that only DBS gels the non-toxic microemulsion. The gelled non-toxic bicontinuous microemulsion H2O-IPM-Plantacare 1200 UP-1,2-octanediol was characterized with oscillatory shear rheometry and small-angle neutron scattering (SANS) at a DBS concentration of 0.3 wt% to verify that the system is indeed a gel and that the microstructure of the microemulsion is not altered by the gel network.

15.
Chemistry ; 25(40): 9464-9476, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31095808

RESUMEN

The role of liquid confinement on the asymmetric Rh catalysis was studied using the 1,2-addition of phenylboroxine (2) to N-tosylimine 1 in the presence of [RhCl(C2 H4 )2 ]2 and chiral diene ligands as benchmark reaction. To get access to Rh complexes of different polarity, enantiomerically pure C2 -symmetric p-substituted 3,6-diphenylbicyclo[3.3.0]octadienes 4 and diastereomerically enriched unsymmetric norbornadienes 5 and 6 carrying either the Evans or the SuperQuat auxiliary were synthesized. A microemulsion containing the equal amounts of H2 O/KOH and toluene/reactants was formulated using the hydrophilic sugar surfactant n-octyl ß-d-glucopyranoside (C8 G1 ) to mediate the miscibility between the nonpolar reactants and KOH, needed to activate the Rh-diene complex. Prominent features of this organized reaction medium are its temperature insensitivity as well as the presence of water and toluene-rich compartments with a domain size of 55 Šconfirmed by small-angle X-ray scattering (SAXS). Although bicyclooctadiene ligands 4 a,b,e performed equally well under homogeneous and microemulsion conditions, ligands 4 c,d gave a different chemoselectivity. For norbornadienes 5, 6, however, microemulsions markedly improved conversion and enantioselectivity as well as reaction rate, as was confirmed by kinetic studies using ligand 5 b.

16.
Langmuir ; 35(15): 5221-5231, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30883120

RESUMEN

Carbon dioxide (CO2) is a renewable carbon source that is easily available in high purity and is utilized as a co-monomer in the direct ring-opening polymerization of epoxides to obtain aliphatic polycarbonates. In this work, degradable aliphatic polycarbonate diblock copolymers (mPEG- b-PBC) are synthesized via catalytic copolymerization of CO2 and 1,2-butylene oxide, starting from monomethoxy poly(ethylene glycol) (mPEG) as a chain transfer reagent. The polymerization proceeds at low temperatures and high CO2 pressure, utilizing the established binary catalytic system ( R, R)-Co(salen)Cl/[PPN]Cl. Amphiphilic nonionic diblock copolymers with varying PBC block lengths and hydrophilic-lipophilic balance values between 9 and 16 are synthesized. The polymers are characterized via NMR and Fourier transform infrared spectroscopies as well as size exclusion chromatography, exhibiting molecular weights ranging from 2400 to 4100 g mol-1 with narrow dispersities ( D = Mw/ Mn) from 1.07 to 1.18. Furthermore, the thermal properties, i.e., Tg, Tm, and Td, are determined. Surface tension measurements prove that the amphiphilic polymers form micelles above the critical micelle concentration, whereas small-angle neutron scattering shows that they are of nearly spherical shape. Adding small amounts of the synthesized mPEG- b-PBC polymers to different microemulsion systems, we found that the polymers were able to strongly increase the efficiency of medium-chain surfactants to solubilize polar oils.

17.
Phys Chem Chem Phys ; 21(1): 160-170, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30515509

RESUMEN

In a previous study we investigated the phase behavior of microemulsions consisting of the ionic liquid ethylammonium nitrate (EAN), an n-alkane and a nonionic alkyl polyglycolether (CiEj). We found the same general trends as for the aqueous counterparts, i.e. a transition from an oil-in-EAN microemulsion via a bicontinuous microemulsion to an EAN-in-oil microemulsion with increasing temperature. However, unlike what happens in the corresponding aqueous systems, in EAN-in-oil microemulsions only a very small amount of EAN was detected by NMR-measurements. This is why we investigated the phase behavior and microstructure of EAN-rich n-dodecane-in-EAN microemulsions and oil-rich EAN-in-n-octane microemulsions. We found that the ionic liquid emulsification failure boundary has an extraordinarily small slope, which suggests that the amphiphilic film loses its ability to solubilize EAN with an increase in temperature by only a few degrees. The analysis of the small angle neutron scattering (SANS) curves unambiguously shows that this behavior is due to the fact that the EAN molecules form a substructure with a characteristic length scale of Λ ≈ 8 Å inside the EAN-in-oil droplets. In more detail, the analysis of the SANS data with the GIFT method revealed a transition from spherical to cylindrical structures approaching the respective critical endpoint temperatures. By using the respective form factors and combining them with a Gaussian spatial intensity distribution to account for the EAN sub-structure we were able to describe the scattering curves nearly quantitatively.

18.
Sci Rep ; 8(1): 13781, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30213960

RESUMEN

The use of smart colloidal microgels for advanced applications critically depends on their response kinetics. We use pressure jump small angle neutron scattering with supreme time resolution to study the rapid volume phase transition kinetics of such microgels. Utilizing the pressure induced microphase separation inside the microgels we were able to resolve their collapse and swelling kinetics. While the collapse occurs on a time scale of 10 ms, the particle swelling turned out to be much faster. Photon correlation spectroscopy and static small angle neutron scattering unambiguously show, that the much slower collapse can be associated with the complex particle architecture exhibiting a loosely-crosslinked outer region and a denser inner core region. These insights into the kinetics of stimuli-responsive materials are of high relevance for their applications as nano-actuators, sensors or drug carriers. Moreover, the used refined pressure jump small angle neutron scattering technique is of broad interest for soft matter studies.

19.
Langmuir ; 33(2): 537-542, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28058846

RESUMEN

During our studies on emulsion-templated monodisperse polymer foams we found significant differences in the finestructure if the locus of initiation is changed. This motivated us to study the phase behavior of the liquid template. Our studies indicate that the template consists of droplets of three different length scales: The water droplets generated via microfluidics (∼70 µm) are surrounded by a continuous phase in which a w/o emulsion (≤100 nm) coexists with a w/o microemulsion (∼5 nm). We speculate that the w/o-emulsion droplets act as seeds for the porous finestructure observed in AIBN-initiated polymer foams. We have experimental evidence that the w/o emulsion inverts to an o/w emulsion with progressing polymerization. This explains the granular texture observed in KPS-initiated polymer foams. The control of the finestructure is important in the preparation of tailor-made polymer foams because it directly impacts the material's density and thus, in turn, its mechanical stability.

20.
Langmuir ; 32(25): 6360-6, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27257802

RESUMEN

The formation kinetics of oil-rich, nonionic microemulsions were investigated along different mixing pathways using a fast stopped-flow device in combination with the new high-flux small-angle neutron spectrometer D33 (ILL, Grenoble, France). While the kinetics along most pathways were too fast to be resolved, two processes could be detected mixing brine and the binary cyclohexane/C10E5 solution. Here, too, the formation of large water-in-oil droplets was found to be faster than 20 ms and therewith faster than the accessible dead time. However, subsequently, both the disintegration of the large water-in-oil droplets (600 Å) and the uptake of water by swollen micelles (50-60 Å) could be resolved. Both processes occur on the time scale of a second. Strikingly, the total internal interface forms faster than 20 ms and does not change over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...