Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2402627, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652482

RESUMEN

While valued for their durability and exceptional performance, crosslinked thermosets are challenging to recycle and reuse. Here, inherent reprocessability in industrially relevant polyolefin thermosetsis unveiled. Unlike prior methods, this approach eliminates the need to introduce exchangeable functionality to regenerate the material, relying instead on preserving the activity of the metathesis catalyst employed in the curing reaction. Frontal ring-opening metathesis polymerization (FROMP) proves critical to preserving this activity. Conditions controlling catalytic viability are explored to successfully reclaim performance across multiple generations of material, thus demonstrating long-term reprocessability. This straightforward and scalable remolding strategy is poised for widespread adoption. Given the anticipated growth in polyolefin thermosets, these findings represent an important conceptual advance in the pursuit of a fully circular lifecycle for thermoset polymers.

2.
Nat Commun ; 15(1): 2771, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553489

RESUMEN

A method is developed for facile encapsulation of reactive organic bases with potential application for autonomous damage detection and self-healing polymers. Highly reactive chemicals such as bases and acids are challenging to encapsulate by traditional oil-water emulsion techniques due to unfavorable physical and chemical interactions. In this work, reactivity of the bases is temporarily masked with photo-removable protecting groups, and the resulting inactive payloads are encapsulated via an in situ emulsion-templated interfacial polymerization method. The encapsulated payloads are then activated to restore the organic bases via photo irradiation, either before or after being released from the core-shell carriers. The efficacy of the photo-activated capsules is demonstrated by a damage-triggered, pH-induced color change in polymeric coatings and by recovery of adhesive strength of a damaged interface. Given the wide range of potential photo-deprotection chemistries, this encapsulation scheme provides a simple but powerful method for storage and targeted delivery of a broad variety of reactive chemicals, promoting design of diverse autonomous functionalities in polymeric materials.

3.
J Am Chem Soc ; 146(11): 7216-7221, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441481

RESUMEN

In this study, we explore the distinct reactivity patterns between frontal ring-opening metathesis polymerization (FROMP) and room-temperature solventless ring-opening metathesis polymerization (ROMP). Despite their shared mechanism, we find that FROMP is less sensitive to inhibitor concentration than room-temperature ROMP. By increasing the initiator-to-monomer ratio for a fixed inhibitor/initiator quantity, we find reduction in the ROMP background reactivity at room temperature (i.e., increased resin pot life). At elevated temperatures where inhibitor dissociation prevails, accelerated frontal polymerization rates are observed because of the concentrated presence of the initiator. Surprisingly, the strategy of employing higher initiator loading enhances both pot life and front speeds, which leads to FROMP rates exceeding prior reported values by over 5 times. This counterintuitive behavior is attributed to an increase in the proximity of the inhibitor to the initiator within the bulk resin and to whether the temperature favors coordination or dissociation of the inhibitor. A rapid method was developed for assessing resin pot life, and a straightforward model for active initiator behavior was established. Modified resin systems enabled direct ink writing of robust thermoset structures at rates much faster than previously possible.

4.
Adv Mater ; 36(11): e2309662, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38087908

RESUMEN

Self-healing offers promise for addressing structural failures, increasing lifespan, and improving durability in polymeric materials. Implementing self-healing in thermoset polymers faces significant manufacturing challenges, especially due to the elevated temperature requirements of thermoset processing. To introduce self-healing into structural thermosets, the self-healing system must be thermally stable and compatible with the thermoset chemistry. This article demonstrates a self-healing microcapsule-based system stable to frontal polymerization (FP), a rapid and energy-efficient manufacturing process with a self-propagating exothermic reaction (≈200 °C). A thermally latent Grubbs-type complex bearing two N-heterocyclic carbene ligands addresses limitations in conventional G2-based self-healing approaches. Under FP's elevated temperatures, the catalyst remains dormant until activated by a Cu(I) co-reagent, ensuring efficient polymerization of the dicyclopentadiene (DCPD) upon damage to the polyDCPD matrix. The two-part microcapsule system consists of one capsule containing the thermally latent Grubbs-type catalyst dissolved in the solvent, and another capsule containing a Cu(I) coagent blended with liquid DCPD monomer. Using the same chemistry for both matrix fabrication and healing results in strong interfaces as demonstrated by lap-shear tests. In an optimized system, the self-healing system restores the mechanical properties of the tough polyDCPD thermoset. Self-healing efficiencies greater than 90% via tapered double cantilever beam tests are observed.

5.
ACS Cent Sci ; 9(9): 1810-1819, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37780353

RESUMEN

Thermosets present sustainability challenges that could potentially be addressed through the design of deconstructable variants with tunable properties; however, the combinatorial space of possible thermoset molecular building blocks (e.g., monomers, cross-linkers, and additives) and manufacturing conditions is vast, and predictive knowledge for how combinations of these molecular components translate to bulk thermoset properties is lacking. Data science could overcome these problems, but computational methods are difficult to apply to multicomponent, amorphous, statistical copolymer materials for which little data exist. Here, leveraging a data set with 101 examples, we introduce a closed-loop experimental, machine learning (ML), and virtual screening strategy to enable predictions of the glass transition temperature (Tg) of polydicyclopentadiene (pDCPD) thermosets containing cleavable bifunctional silyl ether (BSE) comonomers and/or cross-linkers with varied compositions and loadings. Molecular features and formulation variables are used as model inputs, and uncertainty is quantified through model ensembling, which together with heavy regularization helps to avoid overfitting and ultimately achieves predictions within <15 °C for thermosets with compositionally diverse BSEs. This work offers a path to predicting the properties of thermosets based on their molecular building blocks, which may accelerate the discovery of promising plastics, rubbers, and composites with improved functionality and controlled deconstructability.

6.
Nat Chem ; 15(4): 569-577, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36864144

RESUMEN

A major challenge in developing recyclable polymeric materials is the inherent conflict between the properties required during and after their life span. In particular, materials must be strong and durable when in use, but undergo complete and rapid degradation, ideally under mild conditions, as they approach the end of their life span. We report a mechanism for degrading polymers called cyclization-triggered chain cleavage (CATCH cleavage) that achieves this duality. CATCH cleavage features a simple glycerol-based acyclic acetal unit as a kinetic and thermodynamic trap for gated chain shattering. Thus, an organic acid induces transient chain breaks with oxocarbenium ion formation and subsequent intramolecular cyclization to fully depolymerize the polymer backbone at room temperature. With minimal chemical modification, the resulting degradation products from a polyurethane elastomer can be repurposed into strong adhesives and photochromic coatings, demonstrating the potential for upcycling. The CATCH cleavage strategy for low-energy input breakdown and subsequent upcycling may be generalizable to a broader range of synthetic polymers and their end-of-life waste streams.

7.
Chem Rev ; 123(6): 3237-3298, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36827528

RESUMEN

The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.

8.
J Am Chem Soc ; 145(3): 1916-1923, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36637230

RESUMEN

Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R'O-SiR2-OR'', (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si-R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.

9.
J Am Chem Soc ; 145(2): 751-768, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36599076

RESUMEN

Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.


Asunto(s)
Matrimonio , Polímeros , Polímeros/química , Química Orgánica
10.
ACS Macro Lett ; 11(9): 1097-1101, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35998375

RESUMEN

Two frontal polymerization (FP) mechanisms, frontal ring-opening metathesis polymerization (FROMP) of dicyclopentadiene and frontal radical polymerization (FRaP) of benzyl acrylate and hexanediol diacrylate, were combined for rapid manufacturing of welded thermoset materials. Leveraging the immiscibility of the two different FP resins, welded thermosets and gradient foams of varying composition were achieved by switching of FP mechanisms. The adhesion strength of the welded thermoset materials differed depending on the originating mechanism. Finally, welded thermoset foams of varying porosity and homogeneity were generated through initiation from the bottom of the two resins.


Asunto(s)
Acrilatos , Polimerizacion , Porosidad
11.
J Am Chem Soc ; 144(2): 824-831, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35005904

RESUMEN

Organizational chirality on surfaces has been of interest in chemistry and materials science due to its scientific importance as well as its potential applications. Current methods for producing organizational chiral structures on surfaces are primarily based upon the self-assembly of molecules. While powerful, the chiral structures are restricted to those dictated by surface reaction thermodynamics. This work introduces a method to create organizational chirality by design with nanometer precision. Using atomic force microscopy-based nanolithography, in conjunction with chosen surface chemistry, various chiral structures are produced with nanometer precision, from simple spirals and arrays of nanofeatures to complex and hierarchical chiral structures. The size, geometry, and organizational chirality is achieved in deterministic fashion, with high fidelity to the designs. The concept and methodology reported here provide researchers a new and generic means to carry out organizational chiral chemistry, with the intrinsic advantages of chiral structures by design. The results open new and promising applications including enantioselective catalysis, separation, and crystallization, as well as optical devices requiring specific polarized radiation and fabrication and recognition of chiral nanomaterials.

12.
ACS Cent Sci ; 7(4): 603-612, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-34056090

RESUMEN

Complex patterns integral to the structure and function of biological materials arise spontaneously during morphogenesis. In contrast, functional patterns in synthetic materials are typically created through multistep manufacturing processes, limiting accessibility to spatially varying materials systems. Here, we harness rapid reaction-thermal transport during frontal polymerization to drive the emergence of spatially varying patterns during the synthesis of engineering polymers. Tuning of the reaction kinetics and thermal transport enables internal feedback control over thermal gradients to spontaneously pattern morphological, chemical, optical, and mechanical properties of structural materials. We achieve patterned regions with two orders of magnitude change in modulus in poly(cyclooctadiene) and 20 °C change in glass transition temperature in poly(dicyclopentadiene). Our results suggest a facile route to patterned structural materials with complex microstructures without the need for masks, molds, or printers utilized in conventional manufacturing. Moreover, we envision that more sophisticated control of reaction-transport driven fronts may enable spontaneous growth of structures and patterns in synthetic materials, inaccessible by traditional manufacturing approaches.

13.
Nat Commun ; 12(1): 2836, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990579

RESUMEN

Bioinspired vascular networks transport heat and mass in hydrogels, microfluidic devices, self-healing and self-cooling structures, filters, and flow batteries. Lengthy, multistep fabrication processes involving solvents, external heat, and vacuum hinder large-scale application of vascular networks in structural materials. Here, we report the rapid (seconds to minutes), scalable, and synchronized fabrication of vascular thermosets and fiber-reinforced composites under ambient conditions. The exothermic frontal polymerization (FP) of a liquid or gelled resin facilitates coordinated depolymerization of an embedded sacrificial template to create host structures with high-fidelity interconnected microchannels. The chemical energy released during matrix polymerization eliminates the need for a sustained external heat source and greatly reduces external energy consumption for processing. Programming the rate of depolymerization of the sacrificial thermoplastic to match the kinetics of FP has the potential to significantly expedite the fabrication of vascular structures with extended lifetimes, microreactors, and imaging phantoms for understanding capillary flow in biological systems.

14.
Langmuir ; 36(21): 5847-5854, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32396732

RESUMEN

Functionalization of planar and curved glass surfaces with spiropyran (SP) molecules and localized UV-induced activation of the mechanophore are demonstrated. Fluorescence spectra of UV-irradiated SP-functionalized surfaces reveal that increases in surface roughness or curvature produce more efficient conversion of the mechanophore to the open merocyanine (MC) form. Further, force-induced activation of the mechanophore is achieved at curved glass-polymer interfaces and not planar interfaces. Minimal fluorescence signal from UV-irradiated SP-functionalized planar glass surfaces precluded mechanical activation testing. Curved glass-polymer interfaces are prepared by SP functionalization of E-glass fibers, which are subsequently embedded in a poly(methyl methacrylate) (PMMA) matrix. Mechanical activation is induced through shear loading by a single fiber microbond testing protocol. In situ detection of SP activation at the interface is monitored by fluorescence spectroscopy. The fluorescence increase during interfacial testing suggests that attachment of the interfacial SP molecule to both fiber surface and polymer matrix is present and able to achieve significant activation of SP at the fiber-polymer matrix interface. Unlike previous studies for bulk polymers, SP activation is detected at relatively low levels of applied shear stress. By linking SP at the glass-polymer interface and transferring load directly to that interface, a more efficient mechanism for eliciting the SP response is achieved.

15.
Soft Matter ; 16(22): 5139-5147, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32324190

RESUMEN

Monodisperse, stimuli-responsive microcapsules are required for applications involving precise delivery of chemical payloads but are difficult to fabricate with high throughput and control over capsule geometry and shell wall properties, especially in the presence of organic solvents. In this paper, we adapt a facile technique based on the interfacial tension of immiscible phases for the generation of monodisperse emulsion templates and microcapsules. In this technique, either one (single emulsion) or two (double emulsion) dispersed phases are simultaneously delivered while reciprocating across the interface of a stationary immiscible continuous phase. The interfacial tension of the continuous phase results in the separation of a monodisperse droplet in every cycle. Monodisperse single emulsion-templated microcapsules based on cyclic poly(phthalaldehyde) (cPPA) and polymethacrylate (Eudragit E100) shell walls are formed with hydrophobic cores. The acid-triggered release of Eudragit and cPPA microcapsules containing an oil core is demonstrated in an acidic media. Tunable, monodisperse double emulsion templates with an aqueous core are formed with sizes ranging from 295 µm to 1200 µm and reciprocation frequencies of 1 Hz to 7 Hz. The double emulsion templates are converted to monodisperse, responsive microcapsules with a hydrophilic core through photocuring or selective solvent evaporation to form the polymer shell wall. Microcapsules with a variety of polymeric shell walls based on photocurable polyisocyanurate, cPPA and polylactide are fabricated. The acid-triggered release of cPPA microcapsules containing an aqueous core with a slower degradation rate is also demonstrated. We achieve excellent control over the emulsion templates and microcapsules, with polydispersity less than 2% and the ability to predict the size reliably based on process parameters. The cost-effectiveness, ease of fabrication and potential for scale-up make this technique very promising for fabrication of a diverse range of stimuli-responsive microcapsules.

16.
Adv Sci (Weinh) ; 7(7): 1903464, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32274322

RESUMEN

Enhanced force transmission to mechanophores is demonstrated in polymer nanocomposite materials. Spiropyran (SP) mechanophores that change color and fluorescence under mechanical stimuli are functionalized at the interface between SiO2 nanoparticles and polymers. Successful mechanical activation of SP at the interface is confirmed in both solution and solid states. Compared with SP-linked in bulk polymers, interfacial activation induces greater conversion of SP to its colored merocyanine form and also significantly decreases the activation threshold under tension. Experimental observations are supported by finite element simulation of the interfacial stress state. The interfacial force-focusing strategy opens a new way to control the reactivity of mechanophores and also potentially indicates interfacial damage in composite materials.

17.
ACS Cent Sci ; 6(2): 266-273, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32123745

RESUMEN

Transient polymers rapidly and controllably depolymerize in response to a specific trigger, typically by a chain-end unzipping mechanism. Triggers, such as heat, light, and chemical stimuli, are generally dependent on the chemistry of the polymer backbone or end groups. Single electron transfer (SET), in contrast to other triggering mechanisms, is achievable by various means including chemical, electrochemical, and photochemical oxidation or reduction. Here, we identify SET and subsequent mesolytic cleavage as the major thermal triggering mechanism of cyclic poly(phthalaldehyde) (cPPA) depolymerization. Multimodal SET triggering is demonstrated by both chemical and photoredox-triggered depolymerization of cPPA. Redox-active small molecules (p-chloranil and 1,3,5-trimethoxybenzene) were used to tune the depolymerization onset temperature of cPPA over the range 105-135 °C. Extending this mechanism to photoredox catalysis, N-methylacridinium hexafluorophosphate (NMAPF6) was used to photochemically degrade cPPA in solution and thin films. Finally, we fabricated photodegradable cPPA monoliths with a storage modulus of 1.8 GPa and demonstrated complete depolymerization within 25 min of sunlight exposure. Sunlight-triggered depolymerization of cPPA is demonstrated and potentially useful for the manufacture of transient devices that vanish leaving little or no trace. Most importantly, this new mechanism is likely to inspire other SET-triggered transient polymers, whose development may address the ongoing crisis of plastic pollution.

18.
ACS Macro Lett ; 9(11): 1563-1568, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35617057

RESUMEN

In this work, a simple method is reported for control over initiation in frontal ring-opening metathesis polymerization (FROMP). This noncontact approach uses 375 nm light to excite Grubbs' second-generation catalyst in the presence of a phosphite inhibitor. Photoinitiated FROMP of dicylcopentadiene (DCPD) displays a similar cure profile to that of its thermally initiated counterpart, yielding a robust polymer with high glass transition temperature. Furthermore, this system is applied to enhance reaction rates in conventional ring-closing metathesis reactions.

19.
ACS Macro Lett ; 9(6): 819-824, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35648532

RESUMEN

Rapid, solvent-free synthesis of poly(1,4-butadiene) in ambient conditions is demonstrated by frontal ring-opening metathesis polymerization (FROMP) of 1,5-cyclooctadiene (COD). Furthermore, cross-linked copolymers with a wide range of tunable properties are readily prepared by FROMP of mixtures of COD and dicyclopentadiene (DCPD). Specifically, glass transition temperature and tensile modulus are varied from -90 to 114 °C and 3.1 MPa to 1.9 GPa, respectively, by controlling the comonomer ratio. Copolymers with subambient glass transition temperature exhibit robust elastomeric behavior, with the ability to repeatedly recover from large elastic deformations. As a demonstration of the capability of this manufacturing strategy, gradient materials are fabricated in less than a minute with spatially controlled properties for multistage shape memory actuation. This simple yet powerful manufacturing strategy enables rapid synthesis of copolymers ranging from elastomers to thermosets with precise control over thermomechanical properties.

20.
ACS Appl Mater Interfaces ; 11(49): 46226-46232, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31774644

RESUMEN

Poly(lactic acid) (PLA) is an effective sacrificial material for the creation of vascular networks in thermoset polymers and composites. The high thermal stability of PLA limits its applications as an embedded sacrificial template in high-temperature-resistant thermoset matrices. Here, we demonstrate faster and more efficient PLA degradation at temperatures lower than previously reported using two organometallic catalysts: tin(II) oxalate (Sn(Oxa)) and tin(II) acetate (Sn(Ac)2). We process Sn(Oxa) by two separate methods to obtain a significant difference in the specific surface area (SSA) of the catalyst particles and compare PLA degradation performance in a thermogravimetric analysis (TGA) instrument. Changing the SSA of Sn(Oxa) by a factor of ∼20 reduces the PLA degradation onset temperature by 37 °C. The total degradation time of PLA films also decreases after blending with Sn(Oxa) having a higher SSA. We also find Sn(Ac)2 lowers the degradation onset of PLA by 53 °C compared to Sn(Oxa) with a similar SSA. In addition, Sn(Ac)2 decreases the time for complete degradation of PLA films by an order of magnitude compared to Sn(Oxa) at 200 °C. Films with a significantly lower Sn(Ac)2 concentration compared to Sn(Oxa) degrade much faster at lower temperatures up to 160 °C. Finally, PLA films with different loadings of Sn(Ac)2 are embedded in an epoxy thermoset matrix and subsequently vascularized at elevated temperatures in a vacuum oven. Microchannel formation is observed at 170 °C using Sn(Ac)2, reducing the temperature required for vaporization of embedded sacrificial polymer compared to Sn(Oxa) catalyst. Sn(Ac)2 can potentially reduce the energy, time, and amount of catalyst required for degrading PLA into volatile products for sacrificial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...