Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6530, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503765

RESUMEN

Nanoparticulate systems have the prospect of accounting for a new making of drug delivery systems. Nanotechnology is manifested to traverse the hurdle of both physical and biological sciences by implementing nanostructures indistinct fields of science, particularly in nano-based drug delivery. The low delivery efficiency of nanoparticles is a critical obstacle in the field of tumor diagnosis. Several nano-based drug delivery studies are focused on for tumor diagnosis. But, the nano-based drug delivery efficiency was not increased for tumor diagnosis. This work proposes a method called point biserial correlation symbiotic organism search nanoengineering-based drug delivery (PBC-SOSN). The objective and aim of the PBC-SOSN method is to achieve higher drug delivery efficiency and lesser drug delivery time for tumor diagnosis. The contribution of the PBC-SOSN is to optimized nanonengineering-based drug delivery with higher r drug delivery detection rate and smaller drug delivery error detection rate. Initially, raw data acquired from the nano-tumor dataset, and nano-drugs for glioblastoma dataset, overhead improved preprocessed samples are evolved using nano variational model decomposition-based preprocessing. After that, the preprocessed samples as input are subjected to variance analysis and point biserial correlation-based feature selection model. Finally, the preprocessed samples and features selected are subjected to symbiotic organism search nanoengineering (SOSN) to corroborate the objective. Based on these findings, point biserial correlation-based feature selection and a symbiotic organism search nanoengineering were tested for their modeling performance with a nano-tumor dataset and nano-drugs for glioblastoma dataset, finding the latter the better algorithm. Incorporated into the method is the potential to adjust the drug delivery detection rate and drug delivery error detection rate of the learned method based on selected features determined by nano variational model decomposition for efficient drug delivery.


Asunto(s)
Glioblastoma , Nanopartículas , Nanoestructuras , Humanos , Sistemas de Liberación de Medicamentos , Nanotecnología/métodos , Preparaciones Farmacéuticas , Nanopartículas/química
2.
BMC Bioinformatics ; 24(1): 458, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053030

RESUMEN

Intense sun exposure is a major risk factor for the development of melanoma, an abnormal proliferation of skin cells. Yet, this more prevalent type of skin cancer can also develop in less-exposed areas, such as those that are shaded. Melanoma is the sixth most common type of skin cancer. In recent years, computer-based methods for imaging and analyzing biological systems have made considerable strides. This work investigates the use of advanced machine learning methods, specifically ensemble models with Auto Correlogram Methods, Binary Pyramid Pattern Filter, and Color Layout Filter, to enhance the detection accuracy of Melanoma skin cancer. These results suggest that the Color Layout Filter model of the Attribute Selection Classifier provides the best overall performance. Statistics for ROC, PRC, Kappa, F-Measure, and Matthews Correlation Coefficient were as follows: 90.96% accuracy, 0.91 precision, 0.91 recall, 0.95 ROC, 0.87 PRC, 0.87 Kappa, 0.91 F-Measure, and 0.82 Matthews Correlation Coefficient. In addition, its margins of error are the smallest. The research found that the Attribute Selection Classifier performed well when used in conjunction with the Color Layout Filter to improve image quality.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Algoritmos , Neoplasias Cutáneas/diagnóstico por imagen , Melanoma/diagnóstico por imagen , Aprendizaje Automático , Melanoma Cutáneo Maligno
3.
Sci Rep ; 13(1): 16619, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789095

RESUMEN

Detecting lung pathologies is critical for precise medical diagnosis. In the realm of diagnostic methods, various approaches, including imaging tests, physical examinations, and laboratory tests, contribute to this process. Of particular note, imaging techniques like X-rays, CT scans, and MRI scans play a pivotal role in identifying lung pathologies with their non-invasive insights. Deep learning, a subset of artificial intelligence, holds significant promise in revolutionizing the detection and diagnosis of lung pathologies. By leveraging expansive datasets, deep learning algorithms autonomously discern intricate patterns and features within medical images, such as chest X-rays and CT scans. These algorithms exhibit an exceptional capacity to recognize subtle markers indicative of lung diseases. Yet, while their potential is evident, inherent limitations persist. The demand for abundant labeled data during training and the susceptibility to data biases challenge their accuracy. To address these formidable challenges, this research introduces a tailored computer-assisted system designed for the automatic retrieval of annotated medical images that share similar content. At its core lies an intelligent deep learning-based features extractor, adept at simplifying the retrieval of analogous images from an extensive chest radiograph database. The crux of our innovation rests upon the fusion of YOLOv5 and EfficientNet within the features extractor module. This strategic fusion synergizes YOLOv5's rapid and efficient object detection capabilities with EfficientNet's proficiency in combating noisy predictions. The result is a distinctive amalgamation that redefines the efficiency and accuracy of features extraction. Through rigorous experimentation conducted on an extensive and diverse dataset, our proposed solution decisively surpasses conventional methodologies. The model's achievement of a mean average precision of 0.488 with a threshold of 0.9 stands as a testament to its effectiveness, overshadowing the results of YOLOv5 + ResNet and EfficientDet, which achieved 0.234 and 0.257 respectively. Furthermore, our model demonstrates a marked precision improvement, attaining a value of 0.864 across all pathologies-a noteworthy leap of approximately 0.352 compared to YOLOv5 + ResNet and EfficientDet. This research presents a significant stride toward enhancing radiologists' workflow efficiency, offering a refined and proficient tool for retrieving analogous annotated medical images.


Asunto(s)
Inteligencia Artificial , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Radiografía , Pulmón/diagnóstico por imagen
4.
BMC Bioinformatics ; 24(1): 382, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817066

RESUMEN

An abnormal growth or fatty mass of cells in the brain is called a tumor. They can be either healthy (normal) or become cancerous, depending on the structure of their cells. This can result in increased pressure within the cranium, potentially causing damage to the brain or even death. As a result, diagnostic procedures such as computed tomography, magnetic resonance imaging, and positron emission tomography, as well as blood and urine tests, are used to identify brain tumors. However, these methods can be labor-intensive and sometimes yield inaccurate results. Instead of these time-consuming methods, deep learning models are employed because they are less time-consuming, require less expensive equipment, produce more accurate results, and are easy to set up. In this study, we propose a method based on transfer learning, utilizing the pre-trained VGG-19 model. This approach has been enhanced by applying a customized convolutional neural network framework and combining it with pre-processing methods, including normalization and data augmentation. For training and testing, our proposed model used 80% and 20% of the images from the dataset, respectively. Our proposed method achieved remarkable success, with an accuracy rate of 99.43%, a sensitivity of 98.73%, and a specificity of 97.21%. The dataset, sourced from Kaggle for training purposes, consists of 407 images, including 257 depicting brain tumors and 150 without tumors. These models could be utilized to develop clinically useful solutions for identifying brain tumors in CT images based on these outcomes.


Asunto(s)
Neoplasias Encefálicas , Redes Neurales de la Computación , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética , Encéfalo
5.
Sci Rep ; 13(1): 17710, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853025

RESUMEN

Electroencephalogram (EEG) is one of the most common methods used for seizure detection as it records the electrical activity of the brain. Symmetry and asymmetry of EEG signals can be used as indicators of epileptic seizures. Normally, EEG signals are symmetrical in nature, with similar patterns on both sides of the brain. However, during a seizure, there may be a sudden increase in the electrical activity in one hemisphere of the brain, causing asymmetry in the EEG signal. In patients with epilepsy, interictal EEG may show asymmetric spikes or sharp waves, indicating the presence of epileptic activity. Therefore, the detection of symmetry/asymmetry in EEG signals can be used as a useful tool in the diagnosis and management of epilepsy. However, it should be noted that EEG findings should always be interpreted in conjunction with the patient's clinical history and other diagnostic tests. In this paper, we propose an EEG-based improved automatic seizure detection system using a Deep neural network (DNN) and Binary dragonfly algorithm (BDFA). The DNN model learns the characteristics of the EEG signals through nine different statistical and Hjorth parameters extracted from various levels of decomposed signals obtained by using the Stationary Wavelet Transform. Next, the extracted features were reduced using the BDFA which helps to train DNN faster and improve its performance. The results show that the extracted features help to differentiate the normal, interictal, and ictal signals effectively with 100% accuracy, sensitivity, specificity, and F1 score with a 13% selected feature subset when compared to the existing approaches.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico , Convulsiones/diagnóstico , Redes Neurales de la Computación , Algoritmos , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador
6.
Sci Rep ; 13(1): 16779, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798359

RESUMEN

Every year manufacturers of household appliances improve their devices, trying to make everyday life easier for users. New smart devices have many useful features, but not all users can easily cope with the complexity of the devices. One of the main tasks of household appliance manufacturers is to ensure the convenience of using appliances, taking into account the increasing complexity. Therefore, any manufacturer supplies equipment with a short but useful instruction manual. Practice shows that no printed user manual can compare with a demonstration of the device operation by a professional consultant. Instructions for home appliances using augmented reality technology will allow users to get the necessary detailed information about the device in a short period of time. As part of this work, the task of developing an artificial intelligence-based module is being solved. This module consists of developed classification, matching, and tracking submodules that can provide simple and fast visual instructions to users of household appliances in real time. The identification of household appliances is performed with more than 0.9 accuracy, and the tracking inside an unidentified object using the camera of a mobile device is processed with the success score of about 0.68 and frames per second (FPS) about 7. Mobile applications based on the proposed intelligent modules for Android and iOS were developed.

7.
Sci Rep ; 13(1): 14938, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697022

RESUMEN

The Brain Tumor presents a highly critical situation concerning the brain, characterized by the uncontrolled growth of an abnormal cell cluster. Early brain tumor detection is essential for accurate diagnosis and effective treatment planning. In this paper, a novel Convolutional Neural Network (CNN) based Graph Neural Network (GNN) model is proposed using the publicly available Brain Tumor dataset from Kaggle to predict whether a person has brain tumor or not and if yes then which type (Meningioma, Pituitary or Glioma). The objective of this research and the proposed models is to provide a solution to the non-consideration of non-Euclidean distances in image data and the inability of conventional models to learn on pixel similarity based upon the pixel proximity. To solve this problem, we have proposed a Graph based Convolutional Neural Network (GCNN) model and it is found that the proposed model solves the problem of considering non-Euclidean distances in images. We aimed at improving brain tumor detection and classification using a novel technique which combines GNN and a 26 layered CNN that takes in a Graph input pre-convolved using Graph Convolution operation. The objective of Graph Convolution is to modify the node features (data linked to each node) by combining information from nearby nodes. A standard pre-computed Adjacency matrix is used, and the input graphs were updated as the averaged sum of local neighbor nodes, which carry the regional information about the tumor. These modified graphs are given as the input matrices to a standard 26 layered CNN with Batch Normalization and Dropout layers intact. Five different networks namely Net-0, Net-1, Net-2, Net-3 and Net-4 are proposed, and it is found that Net-2 outperformed the other networks namely Net-0, Net-1, Net-3 and Net-4. The highest accuracy achieved was 95.01% by Net-2. With its current effectiveness, the model we propose represents a critical alternative for the statistical detection of brain tumors in patients who are suspected of having one.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Meníngeas , Humanos , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Redes Neurales de la Computación
8.
Sci Rep ; 13(1): 11619, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464006

RESUMEN

The examination of seated occupants' ride comfort under whole-body vibration is a complex topic that involves multiple factors. Whole-body vibration refers to the mechanical vibration that is transmitted to the entire body through a supporting surface, such as a vehicle seat, when traveling on rough or uneven surfaces. There are several methods to assess ride comfort under whole-body vibration, such as subjective assessments, objective measurements, and mathematical models. Subjective assessments involve asking participants to rate their perceived level of discomfort or satisfaction during the vibration exposure, typically using a numerical scale or questionnaire. Objective measurements include accelerometers or vibration meters that record the actual physical vibrations transmitted to the body during the exposure. Mathematical models use various physiological and biomechanical parameters to predict the level of discomfort based on the vibration data. The examination of seated occupants ride comfort under whole-body vibration has been of great interest for many years. In this paper, a multi-body biomechanical model of a seated occupant with a backrest is proposed to perform ride comfort analysis. The novelty of the present model is that it represents complete passenger by including thighs, legs, and foot which were neglected in the past research. A multi-objective firefly algorithm is developed to evaluate the biomechanical parameters (mass, stiffness and damping) of the proposed model. Based on the optimized parameters, segmental transmissibilities are calculated and compared with experimental readings. The proposed model is then combined with a 7-dofs commercial car model to perform a ride comfort study. The ISO 2631-1:1997 ride comfort standards are used to compare the simulated segmental accelerations. Additionally, the influence of biomechanical parameters on most critical organs is analyzed to improve ride comfort. The outcomes of the analysis reveal that seated occupants perceive maximum vibration in the 3-6 Hz frequency range. To improve seated occupants' ride comfort, automotive designers must concentrate on the pelvis region. The adopted methodology and outcomes are helpful to evaluate protective measures in automobile industries. Furthermore, these procedures may be used to reduce the musculoskeletal disorders in seated occupants.


Asunto(s)
Automóviles , Vibración , Humanos , Sedestación , Modalidades de Fisioterapia , Viaje , Fenómenos Biomecánicos
9.
Diagnostics (Basel) ; 13(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37189520

RESUMEN

Spinal cord segmentation is the process of identifying and delineating the boundaries of the spinal cord in medical images such as magnetic resonance imaging (MRI) or computed tomography (CT) scans. This process is important for many medical applications, including the diagnosis, treatment planning, and monitoring of spinal cord injuries and diseases. The segmentation process involves using image processing techniques to identify the spinal cord in the medical image and differentiate it from other structures, such as the vertebrae, cerebrospinal fluid, and tumors. There are several approaches to spinal cord segmentation, including manual segmentation by a trained expert, semi-automated segmentation using software tools that require some user input, and fully automated segmentation using deep learning algorithms. Researchers have proposed a wide range of system models for segmentation and tumor classification in spinal cord scans, but the majority of these models are designed for a specific segment of the spine. As a result, their performance is limited when applied to the entire lead, limiting their deployment scalability. This paper proposes a novel augmented model for spinal cord segmentation and tumor classification using deep nets to overcome this limitation. The model initially segments all five spinal cord regions and stores them as separate datasets. These datasets are manually tagged with cancer status and stage based on observations from multiple radiologist experts. Multiple Mask Regional Convolutional Neural Networks (MRCNNs) were trained on various datasets for region segmentation. The results of these segmentations were combined using a combination of VGGNet 19, YoLo V2, ResNet 101, and GoogLeNet models. These models were selected via performance validation on each segment. It was observed that VGGNet-19 was capable of classifying the thoracic and cervical regions, while YoLo V2 was able to efficiently classify the lumbar region, ResNet 101 exhibited better accuracy for sacral-region classification, and GoogLeNet was able to classify the coccygeal region with high performance accuracy. Due to use of specialized CNN models for different spinal cord segments, the proposed model was able to achieve a 14.5% better segmentation efficiency, 98.9% tumor classification accuracy, and a 15.6% higher speed performance when averaged over the entire dataset and compared with various state-of-the art models. This performance was observed to be better, due to which it can be used for various clinical deployments. Moreover, this performance was observed to be consistent across multiple tumor types and spinal cord regions, which makes the model highly scalable for a wide variety of spinal cord tumor classification scenarios.

10.
Healthcare (Basel) ; 10(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36292519

RESUMEN

The novel coronavirus 2019 (COVID-19) spread rapidly around the world and its outbreak has become a pandemic. Due to an increase in afflicted cases, the quantity of COVID-19 tests kits available in hospitals has decreased. Therefore, an autonomous detection system is an essential tool for reducing infection risks and spreading of the virus. In the literature, various models based on machine learning (ML) and deep learning (DL) are introduced to detect many pneumonias using chest X-ray images. The cornerstone in this paper is the use of pretrained deep learning CNN architectures to construct an automated system for COVID-19 detection and diagnosis. In this work, we used the deep feature concatenation (DFC) mechanism to combine features extracted from input images using the two modern pre-trained CNN models, AlexNet and Xception. Hence, we propose COVID-AleXception: a neural network that is a concatenation of the AlexNet and Xception models for the overall improvement of the prediction capability of this pandemic. To evaluate the proposed model and build a dataset of large-scale X-ray images, there was a careful selection of multiple X-ray images from several sources. The COVID-AleXception model can achieve a classification accuracy of 98.68%, which shows the superiority of the proposed model over AlexNet and Xception that achieved a classification accuracy of 94.86% and 95.63%, respectively. The performance results of this proposed model demonstrate its pertinence to help radiologists diagnose COVID-19 more quickly.

11.
Comput Intell Neurosci ; 2022: 5136865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164421

RESUMEN

Blockchain technology is now regarded as one of the most interesting and possibly innovative technologies. It enables information to be stored and exchanged securely and transparently without the need for a centralized authority to regulate it. Some of the primary benefits of this technology are the atomicity of the stored data. Given its features, this technology has the potential to provide answers to challenges encountered in a very sensitive sector, namely, Internet of Vehicles (IoV). In IoV, vehicles and service providers autonomously capture and produce data without human intervention. This exchanged data must meet certain criteria such as decentralization, automation, security, and stakeholder trust management. To overcome these challenges, the integration of blockchain technology and multi-agent systems is a key solution. Based on smart contracts, the proposed solution consists of exploiting role-based access control (RBAC) and attribute-based access control (ABAC) techniques. This solution removes the central authority (CA) to reduce maintenance costs and eliminate legacy threats from centralized systems. The results, obtained from consumption costs, show that the developed platform is characterized by security, availability, and privacy.


Asunto(s)
Cadena de Bloques , Confianza , Automatización , Comunicación , Humanos , Tecnología
12.
Comput Intell Neurosci ; 2022: 7617551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528345

RESUMEN

Nowadays, the implementation of Artificial Intelligence (AI) in medical diagnosis has attracted major attention within both the academic literature and industrial sector. AI would include deep learning (DL) models, where these models have been achieving a spectacular performance in healthcare applications. According to the World Health Organization (WHO), in 2020 there were around 25.6 million people who died from cardiovascular diseases (CVD). Thus, this paper aims to shad the light on cardiology since it is widely considered as one of the most important in medicine field. The paper develops an efficient DL model for automatic diagnosis of 12-lead electrocardiogram (ECG) signals with 27 classes, including 26 types of CVD and a normal sinus rhythm. The proposed model consists of Residual Neural Network (ResNet-50). An experimental work has been conducted using combined public databases from the USA, China, and Germany as a proof-of-concept. Simulation results of the proposed model have achieved an accuracy of 97.63% and a precision of 89.67%. The achieved results are validated against the actual values in the recent literature.


Asunto(s)
Inteligencia Artificial , Enfermedades Cardiovasculares , Algoritmos , Automatización , Electrocardiografía , Humanos , Redes Neurales de la Computación
13.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35270932

RESUMEN

The coupling of drones and IoT is a major topics in academia and industry since it significantly contributes towards making human life safer and smarter. Using drones is seen as a robust approach for mobile remote sensing operations, such as search-and-rescue missions, due to their speed and efficiency, which could seriously affect victims' chances of survival. This paper aims to modify the Hata-Davidson empirical propagation model based on RF drone measurement to conduct searches for missing persons in complex environments with rugged areas after manmade or natural disasters. A drone was coupled with a thermal FLIR lepton camera, a microcontroller, GPS, and weather station sensors. The proposed modified model utilized the least squares tuning algorithm to fit the data measured from the drone communication system. This enhanced the RF connectivity between the drone and the local authority, as well as leading to increased coverage footprint and, thus, the performance of wider search-and-rescue operations in a timely fashion using strip search patterns. The development of the proposed model considered both software simulation and hardware implementations. Since empirical propagation models are the most adjustable models, this study concludes with a comparison between the modified Hata-Davidson algorithm against other well-known modified empirical models for validation using root mean square error (RMSE). The experimental results show that the modified Hata-Davidson model outperforms the other empirical models, which in turn helps to identify missing persons and their locations using thermal imaging and a GPS sensor.


Asunto(s)
Desastres Naturales , Dispositivos Aéreos No Tripulados , Algoritmos , Humanos , Tecnología de Sensores Remotos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...