Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474014

RESUMEN

The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). The ATR pathway coordinates processes such as replication stress response, stabilization of replication forks, cell cycle arrest, and DNA repair. ATR inhibition disrupts these functions, causing a reduction of DNA repair, accumulation of DNA damage, replication fork collapse, inappropriate mitotic entry, and mitotic catastrophe. Recent data have shown that the inhibition of ATR can lead to synthetic lethality in ATM-deficient malignancies. In addition, ATR inhibition plays a significant role in the activation of the immune system by increasing the tumor mutational burden and neoantigen load as well as by triggering the accumulation of cytosolic DNA and subsequently inducing the cGAS-STING pathway and the type I IFN response. Taken together, we review stimulating data showing that ATR kinase inhibition can alter the DDR network, the immune system, and their interplay and, therefore, potentially provide a novel strategy to improve the efficacy of antitumor therapy, using ATR inhibitors as monotherapy or in combination with genotoxic drugs and/or immunomodulators.


Asunto(s)
Reparación del ADN , Neoplasias , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Resultado del Tratamiento
2.
Front Immunol ; 14: 1274060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124740

RESUMEN

Objectives: The abnormal DNA damage response is associated with upregulation of the type-1 interferon (IFN-I) pathway in certain rheumatic diseases. We investigated whether such aberrant mechanisms operate in psoriatic arthritis (PsA). Methods: DNA damage levels were measured by alkaline comet assay in peripheral blood mononuclear cells from 52 PsA patients and age-sex-matched healthy individuals. RNA expression of IFIT1, MX1 and IFI44, which are selectively induced by IFN-I, was quantitated by real-time polymerase chain reaction and their composite normalized expression resulted in IFN-I score calculation. RNA expression of IL1ß, IL6, TNF, IL17A and IL23A was also assessed in PsA and control subgroups. Results: In PsA, DNA damage accumulation was increased by almost two-fold compared to healthy individuals (olive tail moment arbitrary units, mean ± SD; 9.42 ± 2.71 vs 4.88 ± 1.98, p<0.0001). DNA damage levels significantly correlated with serum C-Reactive-protein and IL6 RNA expression in PBMCs. Despite increased DNA damage, the IFN-I score was strikingly lower in PsA patients compared to controls (-0.49 ± 6.99 vs 4.24 ± 4.26; p<0.0001). No correlation was found between IFN-I pathway downregulation and DNA damage. However, the IFN-I score in a PsA subgroup was lower in those patients with higher IL1ß expression, as well as in those with higher TNF/IL23A PBMCs expression. Conclusion: DNA damage in PsA correlates with measures of inflammation but is not associated with the IFN-I pathway induction. The unexpected IFN-I downregulation, albeit reminiscent to findings in experimental models of spondyloarthritis, may be implicated in PsA pathogenesis and explained by operation of other cytokines.


Asunto(s)
Artritis Psoriásica , Interferón Tipo I , Humanos , Artritis Psoriásica/patología , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/metabolismo , Interleucina-6/metabolismo , Daño del ADN , ARN/metabolismo
3.
ChemMedChem ; 18(22): e202300322, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37792577

RESUMEN

The oncogenic BRAFV600E kinase leads to abnormal activation of the MAPK signaling pathway and thus, uncontrolled cellular proliferation and cancer development. Based on our previous virtual screening studies which issued 2-acetamido-1,3 benzothiazole-6-carboxamide scaffold as active pharmacophore displaying selectivity against the mutated BRAF, eleven new substituted benzothiazole derivatives were designed and synthesized by coupling of 2-acetamidobenzo[d]thiazole-6-carboxylic acid with the appropriate amines in an effort to provide even more efficient inhibitors and tackle drug resistance often developed during cancer treatment. All derived compounds bore the benzothiazole scaffold substituted at position-2 by an acetamido moiety and at position-6 by a carboxamide functionality, the NH moiety of which was further linked through an alkylene linker to a sulfonamido (or amino) aryl (or alkyl) functionality or a phenylene linker to a sulfonamido aromatic (or non-aromatic) terminal pharmacophore in the order -C6 H4 -NHSO2 -R or reversely -C6 H4 -SO2 N(H)-R. These analogs were subsequently biologically evaluated as potential BRAFV600E inhibitors and antiproliferative agents in several colorectal cancer and melanoma cell lines. In all assays applied, one analog, namely 2-acetamido-N-[3-(pyridin-2-ylamino)propyl]benzo[d]thiazole-6-carboxamide (22), provided promising results in view of its use in drug development.


Asunto(s)
Antineoplásicos , Benzotiazoles , Línea Celular Tumoral , Benzotiazoles/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales
4.
Clin Immunol ; 254: 109693, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454866

RESUMEN

Antiphospholipid syndrome (APS) is a rare autoimmune disorder with complex pathogenesis. Studies have shown that oxidative stress may contribute to APS pathophysiology. In peripheral blood mononuclear cells (PBMCs) from thrombotic Primary APS (thrPAPS) patients and age/sex-matched healthy controls (HC), as well as a control group of asymptomatic antiphospholipid antibody (aPL) positive individuals without APS (aPL+/non-APS), we examined oxidative stress, abasic (apurinic/apyrimidinic) sites, and DNA damage response (DDR)-associated parameters, including endogenous DNA damage (single- and double-strand breaks) and DNA repair mechanisms, namely nucleotide excision repair (NER) and double-strand breaks repair (DSB/R). We found that thrPAPS patients exhibited significantly higher levels of endogenous DNA damage, increased oxidative stress and abasic sites, as well as lower NER and DSB/R capacities versus HC (all P < 0.001) and versus aPL+/non-APS subjects (all P < 0.05). Our findings demonstrate that oxidative stress and decreased DNA repair mechanisms contribute to the accumulation of endogenous DNA damage in PBMCs from thrPAPS patients and, if further validated, may be exploited as therapeutic targets and potential biomarkers.


Asunto(s)
Síndrome Antifosfolípido , Trombosis , Humanos , Leucocitos Mononucleares , Reparación del ADN , Estrés Oxidativo , Trombosis/etiología , Daño del ADN
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108309

RESUMEN

Aging is characterized by the progressive deregulation of homeostatic mechanisms causing the accumulation of macromolecular damage, including DNA damage, progressive decline in organ function and chronic diseases. Since several features of the aging phenotype are closely related to defects in the DNA damage response (DDR) network, we have herein investigated the relationship between chronological age and DDR signals in peripheral blood mononuclear cells (PBMCs) from healthy individuals. DDR-associated parameters, including endogenous DNA damage (single-strand breaks and double-strand breaks (DSBs) measured by the alkaline comet assay (Olive Tail Moment (OTM); DSBs-only by γH2AX immunofluorescence staining), DSBs repair capacity, oxidative stress, and apurinic/apyrimidinic sites were evaluated in PBMCs of 243 individuals aged 18-75 years, free of any major comorbidity. While OTM values showed marginal correlation with age until 50 years (rs = 0.41, p = 0.11), a linear relationship was observed after 50 years (r = 0.95, p < 0.001). Moreover, individuals older than 50 years showed increased endogenous DSBs levels (γH2Ax), higher oxidative stress, augmented apurinic/apyrimidinic sites and decreased DSBs repair capacity than those with age lower than 50 years (all p < 0.001). Results were reproduced when we examined men and women separately. Prospective studies confirming the value of DNA damage accumulation as a biomarker of aging, as well as the presence of a relevant agethreshold, are warranted.


Asunto(s)
Roturas del ADN de Doble Cadena , Leucocitos Mononucleares , Masculino , Humanos , Femenino , Persona de Mediana Edad , Leucocitos Mononucleares/fisiología , Estudios Prospectivos , Daño del ADN , Envejecimiento/genética , Reparación del ADN
6.
Clin Immunol ; 246: 109189, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400336

RESUMEN

Behcet's disease (BD) is a chronic, relapsing systemic vasculitis of unknown etiology. Since the DNA repair enzyme NEIL1 has been identified as one of the two genetic risk factors for BD by whole exome study, we examined the potential involvement of the DNA damage response (DDR) network in BD. Peripheral blood mononuclear cells from 26 patients and 26 age-/sex-matched healthy controls were studied. Endogenous DNA damage levels were increased in active BD patients compared to controls or patients in remission. In parallel, BD patients had defective nucleotide excision repair capacity. RNA-sequencing revealed reduced expression of NEIL1 that negatively correlated with DNA damage accumulation. On the other hand, expression of genes involved in senescence and senescence-associated secretory phenotype positively correlated with individual endogenous DNA damage levels. We conclude that deregulated DDR contributes to the proinflammatory environment in BD.


Asunto(s)
Síndrome de Behçet , ADN Glicosilasas , Humanos , Síndrome de Behçet/complicaciones , Leucocitos Mononucleares , Estudios de Casos y Controles
7.
J Gerontol A Biol Sci Med Sci ; 78(4): 603-610, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36209410

RESUMEN

Defects in the DNA damage response and repair (DDR/R) network accumulate during the aging process. Physical frailty, a state of reduced physiological function and decreased resilience to biological stressors, is also exacerbated by aging, but its link with DDR/R aberrations beyond the effect of age and comorbidities is unclear. Fifty-three community-dwelling older adults, aged 65-102 years, who underwent frailty classification according to the Rockwood Clinical Frailty Scale (CFS), and 51 healthy adults younger than 45 years were examined in parallel. The following DDR/R parameters were determined in their peripheral blood mononuclear cells (PBMCs): (a) oxidative stress and abasic (apurinic/apyrimidinic; AP) sites, (b) endogenous DNA damage (alkaline comet assay olive tail moment [OTM] indicative of DNA single-strand breaks [SSBs] and double-strand breaks [DSBs] and γH2AX levels by immunofluorescence [DSBs only]), (c) capacity of the 2 main DNA repair mechanisms (DSB repair and nucleotide excision repair). Older individual-derived PBMCs displayed reduced-to-oxidized glutathione ratios indicative of increased levels of oxidative stress and increased AP sites, as well as increased accumulation of endogenous DNA damage (OTM and γH2AX) and defective DSB-repair capacity, compared with younger controls. These DDR/R aberrations were more pronounced in frail versus nonfrail older adults. Notably, oxidative stress, AP sites, DSBs, and DSB-repair capacity were associated with individual CFS levels after adjusting for chronological age, sex, Charlson Comorbidity Index, and polypharmacy. Geriatric frailty is independently associated with increased DNA damage formation and reduced DSB-R capacity, supporting further research into these measures as potential frailty biomarkers.


Asunto(s)
Roturas del ADN de Doble Cadena , Fragilidad , Humanos , Anciano , Leucocitos Mononucleares , Fragilidad/genética , Reparación del ADN/genética , Estrés Oxidativo/genética , Daño del ADN , ADN/genética , Comorbilidad
8.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555311

RESUMEN

Histone deacetylase inhibitors show synergy with several genotoxic drugs. Herein, we investigated the biological impact of the combined treatment of panobinostat and melphalan in multiple myeloma (MM). DNA damage response (DDR) parameters and the expression of DDR-associated genes were analyzed in bone marrow plasma cells (BMPCs) and peripheral blood mononuclear cells (PBMCs) from 26 newly diagnosed MM patients. PBMCs from 25 healthy controls (HC) were examined in parallel. Compared with the ex vivo melphalan-only treatment, combined treatment with panobinostat and melphalan significantly reduced the efficiency of nucleotide excision repair (NER) and double-strand-break repair (DSB/R), enhanced the accumulation of DNA lesions (monoadducts and DSBs), and increased the apoptosis rate only in patients' BMPCs (all p < 0.001); marginal changes were observed in PBMCs from the same patients or HC. Accordingly, panobinostat pre-treatment decreased the expression levels of critical NER (DDB2, XPC) and DSB/R (MRE11A, PRKDC/DNAPKc, RAD50, XRCC6/Ku70) genes only in patients' BMPCs; no significant changes were observed in PBMCs from patients or HC. Together, our findings demonstrate that panobinostat significantly increased the melphalan sensitivity of malignant BMPCs without increasing the melphalan sensitivity of PBMCs from the same patients, thus paving the way for combination therapies in MM with improved anti-myeloma efficacy and lower side effects.


Asunto(s)
Melfalán , Mieloma Múltiple , Humanos , Melfalán/uso terapéutico , Melfalán/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Panobinostat/farmacología , Leucocitos Mononucleares/metabolismo , Reparación del ADN
9.
Vaccines (Basel) ; 10(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298629

RESUMEN

COVID-19 is an infectious disease caused by the SARS-CoV-2 coronavirus and characterized by an extremely variable disease course, ranging from asymptomatic cases to severe illness. Although all individuals may be infected by SARS-CoV-2, some people, including those of older age and/or with certain health conditions, including cardiovascular disease, diabetes, cancer, and chronic respiratory disease, are at higher risk of getting seriously ill. For cancer patients, there are both direct consequences of the COVID-19 pandemic, including that they are more likely to be infected by SARS-CoV-2 and more prone to develop severe complications, as well as indirect effects, such as delayed cancer diagnosis or treatment and deferred tests. Accumulating data suggest that aberrant SARS-CoV-2 immune response can be attributed to impaired interferon signaling, hyper-inflammation, and delayed adaptive immune responses. Interestingly, the SARS-CoV-2-induced immunological abnormalities, DNA damage induction, generation of micronuclei, and the virus-induced telomere shortening can abnormally activate the DNA damage response (DDR) network that plays a critical role in genome diversity and stability. We present a review of the current literature regarding the molecular mechanisms that are implicated in the abnormal interplay of the immune system and the DDR network, possibly contributing to some of the COVID-19 complications.

10.
Biomedicines ; 10(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35740268

RESUMEN

The deregulated DNA damage response (DDR) network is associated with the onset and progression of cancer. Herein, we searched for DDR defects in peripheral blood mononuclear cells (PBMCs) from lung cancer patients, and we evaluated factors leading to the augmented formation of DNA damage and/or its delayed/decreased removal. In PBMCs from 20 lung cancer patients at diagnosis and 20 healthy controls (HC), we analyzed oxidative stress and DDR-related parameters, including critical DNA repair mechanisms and apoptosis rates. Cancer patients showed higher levels of endogenous DNA damage than HC (p < 0.001), indicating accumulation of DNA damage in the absence of known exogenous genotoxic insults. Higher levels of oxidative stress and apurinic/apyrimidinic sites were observed in patients rather than HC (all p < 0.001), suggesting that increased endogenous DNA damage may emerge, at least in part, from these intracellular factors. Lower nucleotide excision repair and double-strand break repair capacities were found in patients rather than HC (all p < 0.001), suggesting that the accumulation of DNA damage can also be mediated by defective DNA repair mechanisms. Interestingly, reduced apoptosis rates were obtained in cancer patients compared with HC (p < 0.001). Consequently, the expression of critical DDR-associated genes was found deregulated in cancer patients. Together, oxidative stress and DDR-related aberrations contribute to the accumulation of endogenous DNA damage in PBMCs from lung cancer patients and can potentially be exploited as novel therapeutic targets and non-invasive biomarkers.

12.
Life (Basel) ; 12(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35330181

RESUMEN

Microvascular wall abnormalities demonstrated by nailfold capillaroscopy in systemic sclerosis (SSc) may result in microhemorrhagic deposition of erythrocyte-derived iron. Such abnormalities precede fibrosis, which is orchestrated by myofibroblasts. Iron induces endothelial-to-mesenchymal transition in vitro, which is reversed by reactive oxygen species (ROS) scavengers. The conversion of quiescent fibroblasts into profibrotic myofibroblasts has also been associated with ROS-mediated activation of TGF-ß1. Given that iron overload predisposes to ROS formation, we hypothesized that the uptake of erythrocyte-derived iron by resident cells promotes fibrosis. Firstly, we show that iron induces oxidative stress in skin-derived and synovial fibroblasts in vitro, as well as in blood mononuclear cells ex vivo. The biological relevance of increased oxidative stress was confirmed by showing the concomitant induction of DNA damage in these cell types. Similar results were obtained in vivo, following intravenous iron administration. Secondly, using magnetic resonance imaging we show an increased iron deposition in the fingers of a patient with early SSc and nailfold microhemorrhages. While a systematic magnetic resonance study to examine tissue iron levels in SSc, including internal organs, is underway, herein we propose that iron may be a pathogenetic link between microvasculopathy and fibrosis and an additional mechanism responsible for increased oxidative stress in SSc.

13.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166393, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35314351

RESUMEN

Immune senescence in the elderly has been associated with chronic oxidative stress and DNA damage accumulation. Herein we tested the hypothesis that increased endogenous DNA damage and oxidative stress in peripheral blood mononuclear cells of older adults associate with diminished humoral immune response to SARS-CoV-2 vaccination. Increased oxidative stress and DNA double-strand breaks (DSBs) were detected in 9 non-immunocompromised individuals aged 80-96 years compared to 11 adults aged 27-44 years, before, as well as on days 1 and 14 after the first dose, and on day 14 after the second dose of the BNT162B2-mRNA vaccine (all p < 0.05). SARS-CoV-2 vaccination induced a resolvable increase in oxidative stress and DNA damage, but individual DSB-repair efficiency was unaffected by vaccination irrespective of age, confirming vaccination safety. Individual titers of anti-Spike-Receptor Binding Domain (S-RBD)-IgG antibodies, and the neutralizing capacity of circulating anti-SARS-CoV-2 antibodies, measured on day 14 after the second dose in all participants, correlated inversely with the corresponding pre-vaccination endogenous oxidative stress and DSB levels (all p < 0.05). In particular, a strong inverse correlation of individual pre-vaccination DSB levels with both the respective anti-S-RBD-IgG antibodies titers (r = -0.867) and neutralizing capacity of circulating anti-SARS-CoV-2 antibodies (r = -0.983) among the 9 older adults was evident. These findings suggest that humoral responses to SARS-CoV-2 vaccination may be weaker when immune cells are under oxidative and/or genomic stress. Whether such measurements may serve as biomarkers of vaccine efficacy in older adults warrants further studies.


Asunto(s)
Vacuna BNT162 , COVID-19 , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Daño del ADN , Humanos , Leucocitos Mononucleares , Estrés Oxidativo , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
14.
Toxics ; 10(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35051069

RESUMEN

Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and lysine in serum albumin, from their reactive metabolites. In this respect, measurement of the adducts originating from the genotoxic (+)-anti-benzo[a]pyrene diol epoxide is of interest. However, these are difficult to measure at such low levels as are expected in humans generally exposed to benzo[a]pyrene from air pollution and the diet. The analytical methods detecting PAH-biomarkers still suffer from low selectivity and/or detectability to enable generation of data for calculation of in vivo doses of specific stereoisomers, for evaluation of risk factors and assessing risk from exposures to PAH. Here, we suggest an analytical methodology based on high-pressure liquid chromatography (HPLC) coupled to high-resolution tandem mass spectrometry (MS) to lower the detection limits as well as to increase the selectivity with improvements in both chromatographic separation and mass determination. Method development was performed using serum albumin alkylated in vitro by benzo[a]pyrene diol epoxide isomers. The (+)-anti-benzo[a]pyrene diol epoxide adducts could be chromatographically resolved by using an HPLC column with a pentafluorophenyl stationary phase. Interferences were further diminished by the high mass accuracy and resolving power of Orbitrap MS. The achieved method detection limit for the (+)-anti-benzo[a]pyrene diol epoxide adduct to histidine was approximately 4 amol/mg serum albumin. This adduct as well as the adducts to histidine from (-)-anti- and (+/-)-syn-benzo[a]pyrene diol epoxide were quantified in the samples from benzo[a]pyrene-exposed mice. Corresponding adducts to lysine were also quantified. In human serum albumin, the anti-benzo[a]pyrene diol epoxide adducts to histidine were detected in only two out of twelve samples and at a level of approximately 0.1 fmol/mg.

15.
J Autoimmun ; 125: 102755, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34857436

RESUMEN

OBJECTIVE: Adenosine deaminase acting on RNA-1 (ADAR1) enzyme is a type I interferon (IFN)-stimulated gene (ISG) catalyzing the deamination of adenosine-to-inosine, a process called A-to-I RNA editing. A-to-I RNA editing takes place mainly in Alu elements comprising a primate-specific level of post-transcriptional gene regulation. Whether RNA editing is involved in type I IFN responses in systemic sclerosis (SSc) patients remains unknown. METHODS: ISG expression was quantified in skin biopsies and peripheral blood mononuclear cells derived from SSc patients and healthy subjects. A-to-I RNA editing was examined in the ADAR1-target cathepsin S (CTSS) by an RNA editing assay. The effect of ADAR1 on interferon-α/ß-induced CTSS expression was assessed in human endothelial cells in vitro. RESULTS: Increased expression levels of the RNA editor ADAR1, and specifically the long ADAR1p150 isoform, and its target CTSS are strongly associated with type I IFN signature in skin biopsies and peripheral blood derived from SSc patients. Notably, IFN-α/ß-treated human endothelial cells show 8-10-fold increased ADAR1p150 and 23-35-fold increased CTSS expression, while silencing of ADAR1 reduces CTSS expression by 60-70%. In SSc patients, increased RNA editing rate of individual adenosines located in CTSS 3' UTR Alu elements is associated with higher CTSS expression (r = 0.36-0.6, P < 0.05 for all). Similar findings were obtained in subjects with activated type I IFN responses including SLE patients or healthy subjects after influenza vaccination. CONCLUSION: ADAR1p150-mediated A-to-I RNA editing is critically involved in type I IFN responses highlighting the importance of post-transcriptional regulation of proinflammatory gene expression in systemic autoimmunity, including SSc.


Asunto(s)
Interferón Tipo I , Esclerodermia Sistémica , Adenosina/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Células Endoteliales/metabolismo , Humanos , Inosina/genética , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/metabolismo , ARN , Edición de ARN , Proteínas de Unión al ARN/genética , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo
17.
Clin Immunol ; 229: 108765, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089859

RESUMEN

Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.


Asunto(s)
Anticuerpos Neutralizantes/fisiología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Daño del ADN , Lupus Eritematoso Sistémico/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , COVID-19/patología , Estudios de Casos y Controles , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Interferón Tipo I/metabolismo , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Vacunas Sintéticas/inmunología , Adulto Joven , Vacunas de ARNm
18.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166061, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385518

RESUMEN

PLX7904 and PLX8394 are novel BRAFV600E inhibitors-BRAFi that are designed to evade the paradoxical MAPK activation, a trait for the name "paradox breakers"-PB. Current FDA approved inhibitors (Vemurafenib, Dabrafenib, Encorafenib) although improved progression-free survival of mtBRAF melanoma patients suffer from this treatment related side effect. mtBRAF Colorectal Cancer (CRC) is resistant to the approved BRAF inhibitors, although combinatorial treatment co-targeting BRAF and EGFR/MEK is offering a promising prospect. In an effort to explore the potential of the novel BRAF inhibitors-PB to impede CRC cell proliferation, they were tested on RKO, HT29 and Colo-205 cells, bearing the BRAFV600E mutation. This study shows that the BRAF paradox breakers PLX7904 and PLX8394 cause a more prolonged MAPK pathway inhibition and achieve a stronger blockage of proliferation and reduced viability than PLX4720, the sister compound of Vemurafenib. In some treatment conditions, cells can undergo apoptosis. Genomic analysis on the more resistant RKO cells treated with PLX7904, PLX8394 and PLX4720 showed similar gene expression pattern, but the alterations imposed by the PB were more intense. Bioinformatic analysis resulted in a short list of genes representing potential master regulators of the cellular response to BRAF inhibitors' treatments. From our results, it is clear that the BRAF paradox breakers present a notable differential regulation of major pathways, like MAPK signalling, apoptosis, cell cycle, or developmental signalling pathways. Combinatorial treatments of BRAFi with Mcl-1 and Notch modulators show a better effect than mono-treatments. Additional pathways could be further exploited in novel efficient combinatorial treatment protocols with BRAFi.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Compuestos Heterocíclicos con 2 Anillos/farmacología , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mutación Puntual/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
19.
Biomedicines ; 10(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35052761

RESUMEN

Ovarian cancer (OC) is the seventh most common type of cancer in women worldwide. Treatment for OC usually involves a combination of surgery and chemotherapy with carboplatin and paclitaxel. Platinum-based agents exert their cytotoxic action through development of DNA damage, including the formation of intra- and inter-strand cross-links, as well as single-nucleotide damage of guanine. Although these agents are highly efficient, intrinsic and acquired resistance during treatment are relatively common and remain a major challenge for platinum-based therapy. There is strong evidence to show that the functionality of various DNA repair pathways significantly impacts tumor response to treatment. Various DNA repair molecular components were found deregulated in ovarian cancer, including molecules involved in homologous recombination repair (HRR), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end-joining (NHEJ), and base excision repair (BER), which can be possibly exploited as novel therapeutic targets and sensitive/effective biomarkers. This review attempts to summarize published data on this subject and thus help in the design of new mechanistic studies to better understand the involvement of the DNA repair in the platinum drugs resistance, as well as to suggest new therapeutic perspectives and potential targets.

20.
Front Immunol ; 11: 582401, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123169

RESUMEN

Increased endogenous DNA damage and type I interferon pathway activation have been implicated in systemic sclerosis (SSc) pathogenesis. Because experimental evidence suggests an interplay between DNA damage response/repair (DDR/R) and immune response, we hypothesized that deregulated DDR/R is associated with a type I interferon signature and/or fibrosis extent in SSc. DNA damage levels, oxidative stress, induction of abasic sites and the efficiency of DNA double-strand break repair (DSB/R) and nucleotide excision repair (NER) were assessed in peripheral blood mononuclear cells (PBMCs) derived from 37 SSc patients and 55 healthy controls; expression of DDR/R-associated genes and type I interferon-induced genes was also quantified. Endogenous DNA damage was significantly higher in untreated diffuse or limited SSc (Olive tail moment; 14.7 ± 7.0 and 9.5 ± 4.1, respectively) as well as in patients under cytotoxic treatment (15.0 ± 5.4) but not in very early onset SSc (5.6 ± 1.2) compared with controls (4.9 ± 2.6). Moreover, patients with pulmonary fibrosis had significantly higher DNA damage levels than those without (12.6 ± 5.8 vs. 8.8 ± 4.8, respectively). SSc patients displayed increased oxidative stress and abasic sites, defective DSB/R but not NER capacity, downregulation of genes involved in DSB/R (MRE11A, PRKDC) and base excision repair (PARP1, XRCC1), and upregulation of apoptosis-related genes (BAX, BBC3). Individual levels of DNA damage in SSc PBMCs correlated significantly with the corresponding mRNA expression of type I interferon-induced genes (IFIT1, IFI44 and MX1, r=0.419-0.490) as well as with corresponding skin involvement extent by modified Rodnan skin score (r=0.481). In conclusion, defective DDR/R may exert a fuel-on-fire effect on type I interferon pathway activation and contribute to tissue fibrosis in SSc.


Asunto(s)
Interferón Tipo I/genética , Pulmón/patología , Esclerodermia Sistémica/genética , Adulto , Anciano , Apoptosis/genética , Autoanticuerpos/metabolismo , Daño del ADN , Reparación del ADN/genética , Femenino , Fibrosis , Humanos , Interferón Tipo I/metabolismo , Masculino , Persona de Mediana Edad , Estrés Oxidativo/genética , Esclerodermia Sistémica/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...