Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 89(5): 053301, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864825

RESUMEN

Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 µm and a spacing of 500 µm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 µg/cm2 thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.

2.
Rev Sci Instrum ; 88(1): 013701, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147634

RESUMEN

High-resolution, high-sensitivity X-ray imaging is a real challenge in laser plasma diagnostic to attain reliable data in high-energy density plasma experiments. In this context, ultra-high-intensity lasers generate hot and dense plasma but only in a small volume. An experiment has been performed at the LULI2000 laser facility to diagnose such plasma conditions from thermal spectroscopic data. To image the emission zone plasma's Al Heß, a Fresnel-lens-based X-ray imager has been developed. It features a 846 µm-diameter Fresnel Phase Zone Plate (FPZP) and a Pd/B4C multilayer mirror (thickness d = 5.1 nm). This association can be used between 1500 eV and 2100 eV. The FPZP's efficiency was measured on a synchrotron facility (SOLEIL) and its spatial resolution in a laser facility (EQUINOX). The mirror reflectivity was measured on the synchrotron facility BESSY II. With experimental conditions, the system resolution reaches 3.8 ± 0.6 µm with an adequate efficiency in the 1800 eV-1900 eV energy range with a solid angle of 9 × 10-6 sr. Consequently, a FPZP is an excellent optics setup for high-resolution quasi-monochromatic X-ray imaging and provides a good collection angle. Bragg-Fresnel lenses, based on the principle of FPZP and mirrors, are currently designed for an X-ray imager at the Laser MégaJoule facility.

3.
Rev Sci Instrum ; 87(11): 11E303, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910354

RESUMEN

A prototype of a picosecond x-ray streak camera has been developed and tested by Commissariat à l'Énergie Atomique et aux Énergies Alternatives to provide plasma-diagnostic support for the Laser Megajoule. We report on the measured performance of this streak camera, which almost fulfills the requirements: 50-µm spatial resolution over a 15-mm field in the photocathode plane, 17-ps temporal resolution in a 2-ns timebase, a detection threshold lower than 625 nJ/cm2 in the 0.05-15 keV spectral range, and a dynamic range greater than 100.

4.
Opt Express ; 22(21): 25853-65, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401618

RESUMEN

We present an experimental study and performance improvement of periodic and aperiodic Ni/SiC multilayer coatings. Periodic Ni/SiC multilayer mirrors have been coated and characterized by grazing incidence X-ray reflectometry at 8.048 keV (Cu Kα radiation) and by measurements at 3 keV and 5 keV on synchrotron radiation facilities. An interdiffusion effect is found between Ni and SiC layers. A two-material model, Ni(x)Si(y)/SiC, using a silicide instead of Ni, was used to fit the measurements. The addition of 0.6 nm W barrier layers at the interfaces allows a significant reduction of the interdiffusion between Ni and SiC. In order to obtain a specific reflectivity profile in the 2 - 8 keV energy range, we have designed and coated aperiodic multilayer mirrors by using Ni/SiC with and without W barrier layers. The experimental reflectivity profiles as a function of the photon energy were measured on a synchrotron radiation facility in both cases. Adding W barrier layers in Ni/SiC multilayers provides a better precision on the layer thicknesses and a very good agreement between the experimental data and the targeted spectral profile.


Asunto(s)
Compuestos Inorgánicos de Carbono/química , Níquel/química , Fenómenos Ópticos , Compuestos de Silicona/química , Tungsteno/química , Modelos Teóricos , Rayos X
5.
Rev Sci Instrum ; 85(11): 11D620, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430196

RESUMEN

Commissariat à l'Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an "air-box" that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

6.
Rev Sci Instrum ; 83(10): 10E134, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126955

RESUMEN

An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

7.
Rev Sci Instrum ; 81(5): 053501, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20515133

RESUMEN

The laser integration line (LIL) located at CEA-CESTA is equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors, and cameras. The CEA-DAM of Arpajon is currently developing x-ray calibration methods and carrying out absolute calibration of LIL x-ray photodetectors. To guarantee LIL measurements, detectors such as x-ray cameras must be regularly calibrated close to the facility. A new x-ray facility is currently available to perform these absolute x-ray calibrations. This paper presents the x-ray tube based high energy x-ray source delivering x-ray energies ranging from 0.9 to 10 keV by means of an anode barrel. The purpose of this source is mainly to calibrate LIL x-ray cameras but it can also be used to measure x-ray filter transmission of plasma diagnostics. Different x-ray absolute calibrations such as x-ray streak and framing camera yields, x-ray charge-coupled device quantum efficiencies, and x-ray filter transmissions are presented in this paper. A x-ray flat photocathode detector sensitivity calibration recently performed for a CEA Z-pinch facility is also presented.

8.
Phys Rev Lett ; 102(19): 195005, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19518967

RESUMEN

This Letter presents first experimental results of the laser imprint reduction in fusion scale plasmas using a low-density foam layer. The experiments were conducted on the LIL facility at the energy level of 12 kJ with millimeter-size plasmas, reproducing the conditions of the initial interaction phase in the direct-drive scheme. The results include the generation of a supersonic ionization wave in the foam and the reduction of the initial laser fluctuations after propagation through 500 mum of foam with limited levels of stimulated Brillouin and Raman scattering. The smoothing mechanisms are analyzed and explained.

9.
Rev Sci Instrum ; 79(10): 10F301, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044614

RESUMEN

The diagnostic designs for the Laser Megajoule (LMJ) will require components to operate in environments far more severe than those encountered in present facilities. This harsh environment will be induced by fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiations, and, in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced today on existing facilities. The lessons learned about the vulnerabilities of present diagnostic parts fielded mainly on OMEGA for many years, have been very useful guide for the design of future LMJ diagnostics. The present and future LMJ diagnostic designs including this vulnerability approach and their main mitigation techniques will be presented together with the main characteristics of the LMJ facility that provide for diagnostic protection.

10.
Rev Sci Instrum ; 78(3): 033704, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17411188

RESUMEN

This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV-0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MégaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with different spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of approximately 80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 microm over a 2-mm-diam region. The hard x-ray version microscope has a 10 microm resolution over an 800-microm-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 microm over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.

11.
Phys Rev Lett ; 98(9): 095002, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17359162

RESUMEN

Correct modeling of the electron-energy transport is essential for inertial confinement fusion target design. Various transport models have been proposed in order to extend the validity of a hydrodynamical description into weakly collisional regimes, taking into account the nonlocality of the electron transport combined with the effects of self-generated magnetic fields. We have carried out new experiments designed to be highly sensitive to the modeling of the heat flow on the Ligne d'Intégration Laser facility, the prototype of the Laser Megajoule. We show that two-dimensional hydrodynamic simulations correctly reproduce the experimental results only if they include both the nonlocal transport and magnetic fields.

12.
Appl Radiat Isot ; 52(3): 649-55, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10724421

RESUMEN

The use of liquid scintillation counting as a fundamental radionuclide standardisation method requires a correct description of the physical phenomena induced by the interaction of the ionising radiation with the liquid scintillator. In particular the standardisation of radionuclides decaying by electron capture as 55Fe and other electron-capture nuclides, requires the knowledge of total linear absorption coefficients of the liquid scintillator used for absolute activity measurement. Total linear absorption coefficient measurements have been undertaken using synchrotron radiation. Linear absorption coefficients of two widely used commercial liquid scintillators were measured in the 5.5-23 keV energy range. Small discrepancies were noted between theoretical and measured values of the Ultima-Gold mass attenuation coefficients for low energy photons.

13.
Appl Opt ; 38(19): 4074-88, 1999 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18323885

RESUMEN

The design of a versatile high-precision eight-axis ultrahigh-vacuum-compatible polarimeter is presented. This multipurpose instrument can be used as a self-calibrating polarization detector for linearly and circularly polarized UV and soft-x-ray light. It can also be used for the characterization of reflection or transmission properties (reflectometer) or polarizing and phase-retarding properties (ellipsometer) of any optical element. The polarization properties of Mo/Si, Cr/C, Cr/Sc, and Ni/Ti multilayers used in this polarimeter as polarizers in transmission and as analyzers in reflection have been investigated theoretically and experimentally. In the soft-x-ray range, close to the p edges of Sc, Ti, and Cr, resonantly enhanced phase retardation of the transmission polarizers of as much as 18 degrees has been measured. With these newly developed optical elements the complete polarization analysis of soft-x-ray synchrotron radiation can be extended to the water-window range from 300 to 600 eV.

14.
J Synchrotron Radiat ; 5(Pt 3): 376-8, 1998 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15263516

RESUMEN

Experimental data with unprecedented submicrometre resolution obtained in a phase-contrast radiography experiment in a magnifying configuration are presented. The term 'phase contrast' here indicates that the phase retardation of coherent light in matter was utilized as the contrast mechanism. The coherent and divergent beam exiting an X-ray waveguide was used in a lensless configuration to magnify spatial variations in optical path length up to several hundred times. The defocused image of a nylon fibre was measured with a resolution of 0.14 micro m at the object. Sufficient contrast was found for exposure times of 0.1 s, i.e. in the regime for real-time studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...