Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(8): 6726-6735, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323484

RESUMEN

The nanoscale organization of electrolyte solutions at interfaces is often described well by the electrical double-layer model. However, a recent study has shown that this model breaks down in solutions of LiClO4 in acetonitrile at a silica interface, because the interface imposes a strong structuring in the solvent that in turn determines the preferred locations of cations and anions. As a surprising consequence of this organisation, the effective surface potential changes from negative at low electrolyte concentration to positive at high electrolyte concentration. Here we combine previous ion-current measurements with vibrational sum-frequency-generation spectroscopy experiments and molecular dynamics simulations to explore how the localization of ions at the acetonitrile-silica interface depends on the sizes of the anions and cations. We observe a strong, synergistic effect of the cation and anion identities that can prompt a large difference in the ability of ions to partition to the silica surface, and thereby influence the effective surface potential. Our results have implications for a wide range of applications that involve electrolyte solutions in polar aprotic solvents at nanoscale interfaces.

2.
ACS Appl Mater Interfaces ; 15(27): 32916-32925, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37384826

RESUMEN

From drug delivery to ballistic impact, the ability to control or mitigate the puncture of a fast-moving projectile through a material is critical. While puncture is a common occurrence, which can span many orders of magnitude in the size, speed, and energy of the projectile, there remains a need to connect our understanding of the perforation resistance of materials at the nano- and microscale to the actual behavior at the macroscale that is relevant for engineering applications. In this article, we address this challenge by combining a new dimensional analysis scheme with experimental data from micro- and macroscale impact tests to develop a relationship that connects the size-scale effects and materials properties during high-speed puncture events. By relating the minimum perforation velocity to fundamental material properties and geometric test conditions, we provide new insights and establish an alternative methodology for evaluating the performance of materials that is independent of the impact energy or the specific projectile puncture experiment type. Finally, we demonstrate the utility of this approach by assessing the relevance of novel materials, such as nanocomposites and graphene for real-world impact applications.

3.
Anal Chem ; 94(47): 16443-16450, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36377824

RESUMEN

Crystal polymorphism of pharmaceutical compounds directly impacts resulting physicochemical characteristics, a critical aspect in active pharmaceutical ingredient (API) production. Tools to characterize and chemically map these polymorphs at the single particle scale remain important to advancing directed manufacture of targeted polymorphs. Here, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed for chemically imaging inkjet printed acetaminophen samples. ToF-SIMS generates large data sets of high spatial resolution images. Extracting relevant data and peaks of interest can be laborious for, and biased by, users. Advances in machine learning approaches have introduced many supervised and unsupervised methods for data analysis. In this study, we apply non-negative matrix factorization (NMF) for the unsupervised analysis of ToF-SIMS chemical image data. More specifically, an expanded variant of NMF, NMFk, was employed to determine the data set's latent dimensionality. NMFk combines the spectral unmixing of traditional NMF with k-means clustering of the resulting factors and an optimization of the reconstruction and clustering. The method was used to identify the number of polymorph phases-and their representative mass spectra-generated from inkjet printed acetaminophen samples. Amorphous, crystalline form I, and crystalline form II polymorphs were observed. The learned polymorph mass spectra were then used to map the learned polymorphs onto subsequent particle samples of acetaminophen. Finally, NMFk also enabled the decomposition of mixed particle samples (i.e., migraine medicine), learning the number of compounds and their composition. The extracted constituent phase mass spectra-representing single compounds-were searched against mass spectral libraries for identification.


Asunto(s)
Acetaminofén , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos , Algoritmos , Análisis por Conglomerados , Preparaciones Farmacéuticas
4.
Soft Matter ; 18(2): 256-261, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34931215

RESUMEN

Toughness in an entangled polymer network is typically controlled by the number of load-bearing topological constraints per unit volume. In this work, we demonstrate a new paradigm for controlling toughness at high deformation rates in a polymer-grafted nanoparticle composite system where the entanglement density increases with the molecular mass of the graft. An unexpected peak in the toughness is observed right before the system reaches full entanglement that cannot be described through the entanglement concept alone. Quasi-elastic neutron scattering reveals enhanced segmental fluctuations of the grafts on the picosecond time scale, which propagate out to nanoparticle fluctuations on the time scale 100s of seconds as evidenced by X-ray photon correlation spectroscopy. This surprising multi-scale dissipation process suggests a nanoparticle jamming-unjamming transition. The realization that segmental dynamics can be coupled with the entanglement concept for enhanced toughness at high rates of deformation is a novel insight with relevance to the design of composite materials.

5.
Soft Matter ; 16(16): 3886-3890, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32285897

RESUMEN

The dynamic impact between a particle and a planar material is important in many high impact events, and there is a growing need to characterize the mechanical properties of light-weight polymeric materials at dynamic loading conditions. Here, a laser-induced projectile impact test (LIPIT) is employed to investigate the ballistic limit (V0) and materials properties at impact velocities ranging from 40 m s-1 to 70 m s-1. An analytical expression describing the various energy dissipation mechanisms is established to estimate the yield stress and elasticity for polycarbonate thin films. This measurement approach demonstrates the utility of using low sample mass for discovery of materials for impact mitigation, as well as high-throughput mechanical characterization at dynamic loading rates.

6.
Appl Opt ; 56(13): 3875-3878, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28463281

RESUMEN

Solvents for cleaning optics often come into contact with plastic and/or rubber during storage and transfer. To explore the effects that exposure to these materials can have on solvents, we used vibrational sum-frequency-generation spectroscopy to study a silica optic following cleaning with solvents that had come into contact with either low-density polyethylene, high-density polyethylene, or rubber. Our studies show that even brief contact of acetone, methanol, or isopropanol with plastic or rubber can cause otherwise pure solvents to leave a persistent residue.

7.
J Phys Chem B ; 117(49): 15875-85, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24088038

RESUMEN

There is a growing appreciation that dynamic processes play an important role in determining the line shape in surface-selective, nonlinear spectroscopies such as vibrational sum-frequency-generation (VSFG). Here we analyze the influence that reorientation can have on VSFG spectra when the vibrational transition frequency is a function of orientation. Under these circumstances, reorientation-induced spectral diffusion (RISD) causes the underlying spectral line shape to become time dependent. Unlike previously reported mechanisms through which reorientation can contribute to the VSFG signal, RISD influences the line shape regardless of the degree of polarization of the Raman transition that is probed. We assess the impact of RISD on VSFG spectra using a model system of liquid acetonitrile at a silica interface. Comparison of delay-time-dependent VSFG spectra with simulations that employ static line shapes suggests that RISD contributes substantially to the spectra, particularly at delay times that are comparable to or greater than the probe pulse duration. The observed behavior is in qualitative agreement with a two-state RISD model that uses orientational distributions determined from previous molecular dynamics simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...