Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(25): 17796-17808, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38881336

RESUMEN

A family of dithienosilole-based dyes with alternating donor and acceptor conjugated groups, decorated with linear or branched alkyl chains at different positions on the backbone, have been obtained and investigated in different aggregation states. These dyes are characterized by almost panchromatic absorption and by near-IR emission, with good quantum yields in a variety of solvents with different polarity. We demonstrate that the nature and position of the alkyl substituents strongly govern the self-assembly of the dyes, whose packing is also sensitive to external stimuli, such as grinding and water addition. Thanks to computational results and theoretical modelling, we are able to interpret the results based on two possible preferential packings, characterized by distinct spectroscopic behaviour, whose abundance can be tuned according to the nature and position of the alkyl chains, as well as via external stimuli.

2.
Chem Sci ; 15(9): 3165-3173, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425525

RESUMEN

The carbon dioxide radical anion [CO2˙-] is a highly reactive species of fundamental and synthetic interest. However, the direct one-electron reduction of CO2 to generate [CO2˙-] occurs at very negative reduction potentials, which is often a limiting factor for applications. Here, we show that NHC-CO2-BR3 species - generated from the Frustrated Lewis Pair (FLP)-type activation of CO2 by N-heterocyclic carbenes (NHCs) and boranes (BR3) - undergo single electron reduction at a less negative potential than free CO2. A net gain of more than one volt was notably measured with a CAAC-CO2-B(C6F5)3 adduct, which was chemically reduced to afford [CAAC-CO2-B(C6F5)3˙-]. This room temperature stable radical anion was characterized by EPR spectroscopy and by single-crystal X-ray diffraction analysis. Of particular interest, DFT calculations showed that, thanks to the electron withdrawing properties of the Lewis acid, significant unpaired spin density is localised on the carbon atom of the CO2 moiety. Finally, these species were shown to exhibit analogous reactivity to the carbon dioxide radical anion [CO2˙-] toward DMPO. This work demonstrates the advantage provided by FLP systems in the generation and stabilization of [CO2˙-]-like species.

3.
Inorg Chem ; 62(49): 20349-20363, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994054

RESUMEN

A fundamental challenge for phototriggered therapies is to obtain robust molecular frameworks that can withstand biological media. Photoactivatable nitric oxide (NO) releasing molecules (photoNORMs) based on ruthenium nitrosyl (RuNO) complexes are among the most studied systems due to several appealing features that make them attractive for therapeutic applications. Nevertheless, the propensity of the NO ligand to be attacked by nucleophiles frequently manifests as significant instability in water for this class of photoNORMs. Our approach to overcome this limitation involved enhancing the Ru-NO π-backbonding to lower the electrophilicity at the NO by replacing the commonly employed 2,2'-bipyridine (bpy) ligand by an anionic, electron-rich, acetylacetonate (acac). A versatile and convenient synthetic route is developed and applied for the preparation of a large library of RuNO photoNORMs with the general formula [RuNO(tpy)(acac)]2+ (tpy = 2,2':6',2″-terpyridine). A combined theoretical and experimental analysis of the Ru-NO bonding in these complexes is presented, supported by extensive single-crystal X-ray diffraction experiments and by topological analyses of the electron charge density by DFT. The enhanced π-back-bonding, systematically evidenced by several techniques, resulted in a remarkable stability in water for these complexes, where significant NO release efficiencies were recorded. We finally demonstrate the possibility of obtaining sophisticated water-stable multipolar NO-delivery platforms that can be activated in the near-IR region by two-photon absorption (TPA), as demonstrated for an octupolar complex with a TPA cross section of 1530 GM at λ = 800 nm and for which NO photorelease was demonstrated under TPA irradiation in aqueous media.

4.
Dalton Trans ; 52(20): 6791-6798, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37133379

RESUMEN

The addition of benzoyl peroxide to [CoII(acac)2] in a 1 : 2 ratio selectively produces [CoIII(acac)2(O2CPh)], a diamagnetic (NMR) mononuclear CoIII complex with an octahedral (X-ray diffraction) coordination geometry. It is the first reported mononuclear CoIII derivative with a chelated monocarboxylate ligand and an entirely O-based coordination sphere. The compound degrades in solution quite slowly by homolytic CoIII-O2CPh bond cleavage upon warming above 40 °C to produce benzoate radicals and can serve as a unimolecular thermal initiator for the well-controlled radical polymerisation of vinyl acetate. Addition of ligands (L = py, NEt3) induces benzoate chelate ring opening and formation of both cis and trans isomers of [CoIII(acac)2(O2CPh)(L)] for L = py under kinetic control, then converting quantitatively to the cis isomer, whereas the reaction is less selective and equilibrated for L = NEt3. The py addition strengthens the CoIII-O2CPh bond and lowers the initiator efficiency in radical polymerisation, whereas the NEt3 addition results in benzoate radical quenching by a redox process. In addition to clarifying the mechanism of the radical polymerisation redox initiation by peroxides and rationalizing the quite low efficiency factor for the previously reported [CoII(acac)2]/peroxide-initiated organometallic-mediated radical polymerisation (OMRP) of vinyl acetate, this investigation provides relevant information on the CoIII-O homolytic bond cleavage process.

5.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36015146

RESUMEN

An antileishmanial structure−activity relationship (SAR) study focused on positions 2 and 8 of the imidazo[1,2-a]pyridine ring was conducted through the synthesis of 22 new derivatives. After being screened on the promatigote and axenic amastigote stages of Leishmania donovani and L. infantum, the best compounds were tested against the intracellular amastigote stage of L. infantum and evaluated regarding their in vitro physicochemical and pharmacokinetic properties, leading to the discovery of a new antileishmanial6-chloro-3-nitro-8-(pyridin-4-yl)-2-[(3,3,3-trifluoropropylsulfonyl)methyl]imidazo[1,2-a]pyridine hit. It displayed low cytotoxicities on both HepG2 and THP1 cell lines (CC50 > 100 µM) associated with a good activity against the intracellular amastigote stage of L. infantum (EC50 = 3.7 µM versus 0.4 and 15.9 µM for miltefosine and fexinidazole, used as antileishmanial drug references). Moreover, in comparison with previously reported derivatives in the studied series, this compound displayed greatly improved aqueous solubility, good mouse microsomal stability (T1/2 > 40 min) and high gastrointestinal permeability in a PAMPA model, making it an ideal candidate for further in vivo studies on an infectious mouse model.

6.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744903

RESUMEN

The coordination chemistry of the N-heterocyclic carbene ligand IMes(NMe2)2, derived from the well-known IMes ligand by substitution of the carbenic heterocycle with two dimethylamino groups, was investigated with d6 [Mn(I), Fe(II)], d8 [Rh(I)], and d10 [Cu(I)] transition-metal centers. The redox behavior of the resulting organometallic complexes was studied through a combined experimental/theoretical study, involving electrochemistry, EPR spectroscopy, and DFT calculations. While the complexes [CuCl(IMes(NMe2)2)], [RhCl(COD)(IMes(NMe2)2)], and [FeCp(CO)2 (IMes(NMe2)2)](BF4) exhibit two oxidation waves, the first oxidation wave is fully reversible but only for the first complex the second oxidation wave is reversible. The mono-oxidation event for these complexes occurs on the NHC ligand, with a spin density mainly located on the diaminoethylene NHC-backbone, and has a dramatic effect on the donating properties of the NHC ligand. Conversely, as the Mn(I) center in the complex [MnCp(CO)2 ((IMes(NMe2)2)] is easily oxidizable, the latter complex is first oxidized on the metal center to form the corresponding cationic Mn(II) complex, and the NHC ligand is oxidized in a second reversible oxidation wave.

7.
Inorg Chem ; 59(24): 18402-18406, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33284611

RESUMEN

Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule. To investigate this issue, we carried out a detailed density functional theory and variable temperature cyclic voltammetry investigation of the benchmark compound [Fe(HB(1,2,4-triazol-1-yl)3)2] in solution. We show that, for a correct thermodynamical picture, it is necessary to take into account the charge transfer-induced electronic and structural reorganization as well as spin equilibria in the oxidized and reduced species.

8.
Eur J Med Chem ; 206: 112668, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795774

RESUMEN

To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = -0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program.


Asunto(s)
Imidazoles/química , Imidazoles/farmacología , Piridinas/química , Piridinas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Daño del ADN/efectos de los fármacos , Descubrimiento de Drogas , Células Hep G2 , Humanos , Imidazoles/metabolismo , Imidazoles/farmacocinética , Concentración 50 Inhibidora , Ratones , Pruebas de Sensibilidad Parasitaria , Piridinas/metabolismo , Piridinas/farmacocinética , Albúmina Sérica/metabolismo , Relación Estructura-Actividad , Tripanocidas/metabolismo , Tripanocidas/farmacocinética
9.
Eur J Med Chem ; 202: 112558, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32652409

RESUMEN

An antikinetoplastid pharmacomodulation study was done at position 8 of a previously identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested in vitro, highlighting 3 potent (40 nM ≤ EC50 blood stream form≤ 70 nM) and selective (500 ≤ SI ≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs. Among these hit molecules, compound 19 also showed the same level of activity against T. cruzi (EC50 amastigotes = 1.2 µM) as benznidazole and fexinidazole. An in vitro comet assay showed that nitroaromatic derivative 19 was not genotoxic. It displayed a low redox potential value (-0.68 V/NHE) and was shown to be bioactivated by type 1 nitroreductases both in Leishmania and Trypanosoma. The SAR study indicated that an alcohol function improved aqueous solubility while maintaining good activity and low cytotoxicity when the hydroxyl group was at position beta of the alkyne triple bond. Hit-compound 19 was also evaluated regarding in vitro pharmacokinetic data: 19 is BBB permeable (PAMPA assay), has a 16 min microsomal half-life and a high albumin binding (98.5%). Moreover, compound 19 was orally absorbed and was well tolerated in mouse after both single and repeated administrations at 100 mg/kg. Its mouse plasma half-life (10 h) is also quite encouraging, paving the way toward further efficacy evaluations in parasitized mouse models, looking for a novel antitrypanosomal lead compound.


Asunto(s)
Nitroimidazoles/farmacología , Piridinas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estructura Molecular , Nitroimidazoles/síntesis química , Nitroimidazoles/química , Pruebas de Sensibilidad Parasitaria , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
10.
ACS Med Chem Lett ; 11(4): 464-472, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32292551

RESUMEN

An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC50 ≤ 13 µM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = -0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds.

11.
ACS Med Chem Lett ; 10(1): 34-39, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30655943

RESUMEN

Twenty nine original 3-nitroimidazo[1,2-a]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. In vitro evaluation highlighted compound 5 as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC50 > 100 µM) alongside good antileishmanial activities (IC50 = 1-2.1 µM) against L. donovani, L. infantum, and L. major; and good antitrypanosomal activities (IC50 = 1.3-2.2 µM) against T. brucei brucei and T. cruzi, in comparison to several reference drugs such as miltefosine, fexinidazole, eflornithine, and benznidazole (IC50 = 0.6 to 13.3 µM). Molecule 5, presenting a low reduction potential (E° = -0.63 V), was shown to be selectively bioactivated by the L. donovani type 1 nitroreductase (NTR1). Importantly, molecule 5 was neither mutagenic (negative Ames test), nor genotoxic (negative comet assay), in contrast to many other nitroaromatics. Molecule 5 showed poor microsomal stability; however, its main metabolite (sulfoxide) remained both active and nonmutagenic, making 5 a good candidate for further in vivo studies.

12.
Inorg Chem ; 57(24): 15537-15549, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30481016

RESUMEN

The electronic and structural properties of ten heteroleptic [Cu(NN)(PP)]+ complexes have been investigated. NN indicates 1,10-phenanthroline (phen) or 4,7-diphenyl-1,10-phenanthroline (Bphen); each of these ligands is combined with five PP bis-phosphine chelators, i.e., bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppb), and bis[(2-diphenylphosphino)phenyl] ether (POP). All complexes are mononuclear, apart from those based on dppm, which are dinuclear. Experimental data-also taken from the literature and including electrochemical properties, X-ray crystal structures, UV-vis absorption spectra in CH2Cl2, luminescence spectra and lifetimes in solution, in PMMA, and as powders-have been rationalized with the support of density functional theory calculations. Temperature dependent studies (78-358 K) have been performed for selected complexes to assess thermally activated delayed fluorescence. The main findings are (i) dependence of the ground-state geometry on the crystallization conditions, with the same complex often yielding different crystal structures; (ii) simple model compounds with imposed C2 v symmetry ([Cu(phen)(PX3)2]+; X = H or CH3) are capable of modeling structural parameters as a function of the P-Cu-P bite angle, which plays a key role in dictating the overall structure of [Cu(NN)(PP)]+ complexes; (iii) as the P-Cu-P angle increases, the energy of the metal-to-ligand charge transfer absorption bands linearly increases; (iv) the former correlation does not hold for emission spectra, which are red-shifted for the weaker luminophores; (v) the larger the number of intramolecular π-interactions within the complex in the ground state, the higher the luminescence quantum yield, underpinning a geometry locking effect that limits the structural flattening of the excited state. This work provides a general framework to rationalize the structure-property relationships of [Cu(NN)(PP)]+, a class of compounds of increasing relevance for electroluminescent devices, photoredox catalysis, and solar-to-fuels conversion, which so far have been investigated in an unsystematic fashion, eluding a comprehensive understanding.

13.
ChemMedChem ; 13(20): 2217-2228, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30221468

RESUMEN

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 µm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 µm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.


Asunto(s)
Nitroquinolinas/farmacología , Quinolonas/farmacología , Tripanocidas/farmacología , Catálisis , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Estructura Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/química , Nitroquinolinas/toxicidad , Paladio/química , Pruebas de Sensibilidad Parasitaria , Quinolonas/síntesis química , Quinolonas/química , Quinolonas/toxicidad , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/toxicidad , Trypanosoma brucei brucei/efectos de los fármacos
14.
Eur J Med Chem ; 159: 35-46, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30268015

RESUMEN

Ethionamide is a key antibiotic prodrug of the second-line chemotherapy regimen to treat tuberculosis. It targets the biosynthesis of mycolic acids thanks to a mycobacterial bioactivation carried out by the Baeyer-Villiger monooxygenase EthA, under the control of a transcriptional repressor called EthR. Recently, the drug-like molecule SMARt-420, which triggers a new transcriptional regulator called EthR2, allowed the derepression a cryptic alternative bioactivation pathway of ethionamide. In order to study the bioactivation of a collection of thioisonicotinamides through the two bioactivation pathways, we developed a new two-step chemical pathway that led to the efficient synthesis of eighteen ethionamide analogues. Measurements of the antimycobacterial activity of these derivatives, used alone and in combination with boosters BDM41906 or SMARt-420, suggest that the two different bioactivation pathways proceed via the same mechanism, which implies the formation of similar metabolites. In addition, an electrochemical study of the aliphatic thioisonicotinamide analogues was undertaken to see whether their oxidation potential correlates with their antitubercular activity measured in the presence or in the absence of the two boosters.


Asunto(s)
Antituberculosos/farmacología , Etionamida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tioamidas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Etionamida/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tioamidas/química
15.
Eur J Med Chem ; 157: 115-126, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30092366

RESUMEN

Based on a previously identified antileishmanial 6,8-dibromo-3-nitroimidazo[1,2-a]pyridine derivative, a Suzuki-Miyaura coupling reaction at position 8 of the scaffold was studied and optimized from a 8-bromo-6-chloro-3-nitroimidazo[1,2-a]pyridine substrate. Twenty-one original derivatives were prepared, screened in vitro for activity against L. infantum axenic amastigotes and T. brucei brucei trypomastigotes and evaluated for their cytotoxicity on the HepG2 human cell line. Thus, 7 antileishmanial hit compounds were identified, displaying IC50 values in the 1.1-3 µM range. Compounds 13 and 23, the 2 most selective molecules (SI = >18 or >17) were additionally tested on both the promastigote and intramacrophage amastigote stages of L. donovani. The two molecules presented a good activity (IC50 = 1.2-1.3 µM) on the promastigote stage but only molecule 23, bearing a 4-pyridinyl substituent at position 8, was active on the intracellular amastigote stage, with a good IC50 value (2.3 µM), slightly lower than the one of miltefosine (IC50 = 4.3 µM). The antiparasitic screening also revealed 8 antitrypanosomal hit compounds, including 14 and 20, 2 very active (IC50 = 0.04-0.16 µM) and selective (SI = >313 to 550) molecules toward T. brucei brucei, in comparison with drug-candidate fexinidazole (IC50 = 0.6 & SI > 333) or reference drugs suramin and eflornithine (respective IC50 = 0.03 and 13.3 µM). Introducing an aryl moiety at position 8 of the scaffold quite significantly increased the antitrypanosomal activity of the pharmacophore. Antikinetoplastid molecules 13, 14, 20 and 23 were assessed for bioactivation by parasitic nitroreductases (either in L. donovani or in T. brucei brucei), using genetically modified parasite strains that over-express NTRs: all these molecules are substrates of type 1 nitroreductases (NTR1), such as those that are responsible for the bioactivation of fexinidazole. Reduction potentials measured for these 4 hit compounds were higher than that of fexinidazole (-0.83 V), ranging from -0.70 to -0.64 V.


Asunto(s)
Antineoplásicos/farmacología , Leishmania donovani/efectos de los fármacos , Nitrorreductasas/metabolismo , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Leishmania donovani/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/metabolismo , Trypanosoma brucei brucei/metabolismo
16.
Chem Commun (Camb) ; 54(55): 7653-7656, 2018 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-29932183

RESUMEN

IMes-derived thioureas in which the imidazolyl ring is directly substituted by one or two dimethylamino groups are redox-active, exhibiting one and two oxidized states, respectively. The structure, stability, and electronics of the oxidized species are investigated, emphasizing the decisive role of the amino substituents.

17.
Eur J Med Chem ; 155: 135-152, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29885575

RESUMEN

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.


Asunto(s)
Antiprotozoarios/farmacología , Técnicas Electroquímicas , Kinetoplastida/efectos de los fármacos , Nitroquinolinas/farmacología , Nitrorreductasas/metabolismo , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Kinetoplastida/enzimología , Leishmania infantum/efectos de los fármacos , Leishmania infantum/enzimología , Estructura Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/química , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología
18.
ACS Omega ; 3(11): 15582-15591, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458214

RESUMEN

The anionic 5-acetylimidazol-2-ylidene-4-olate 1 -, named as "IMes-acac", is composed of fused diaminocarbene and acetylacetonato units in the same IMes-based imidazolyl ring. The bifunctional compound 1 - is shown to act as an effective, ditopic bridging ligand for transition metal centers. Several new complexes supported by this ligand were prepared, including the complex [RuCl(p-Cym)(κ2 O,O-1·H)](BF4) (2), which can be regarded as a metallated imidazolium salt, the homobimetallic complex [((COD)Rh)(RhCl(COD))(µ-1κ2 O,O:2κ1 C-1)] (4), the heterobimetallic complexes [((p-Cym)ClRu)(RhCl(COD))(µ-1κ2 O,O:2κ1 C-1)] (3), [((p-Cym)ClRu)(RhCl(CO)2)(µ-1κ2 O,O:2κ1 C-1)] (5), [((p-Cym)ClRu)(Cu(IPr))(µ-1κ2 O,O:2κ1 C-1)] (9), the anionic homoleptic Cu(I) complexes [Cu(κ1 C-1)2]K ([10]K) and [Cu(κ1 C-1)2](NEt4) ([10](NEt4)), and the heterotrimetallic complex [((p-Cym)RuCl)2(Cu)(µ-1κ2 O,O:3κ1 C-1)(µ-2κ2 O,O:3κ1 C-1)](PF6) (11). Preliminary studies on the possible preparation of supramolecular metallopolymers and electrochemical studies on the series of complexes are also reported.

19.
J Inorg Biochem ; 179: 71-81, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29175704

RESUMEN

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite. A redox-mediated activation of isoniazid using an iron metal complex was previously proposed as a strategy to overcome isoniazid resistance due to KatG mutations. Here, we have prepared a series of iron metal complexes with isoniazid and analogues, containing alkyl substituents at the hydrazide moiety, and also with pyrazinamide derivatives. These complexes were activated by H2O2 and studied by ESR and LC-MS. For the first time, the formation of the oxidized INH-NAD adduct from the pentacyano(isoniazid)ferrate(II) complex was detected by LC-MS, supporting a redox-mediated activation, for which a mechanistic proposition is reported. ESR data showed all alkylated hydrazides, in contrast to non-substituted hydrazides, only generated alkyl-based radicals. The structural modifications did not improve minimal inhibitory concentration (MIC) against MTB in comparison to isoniazid iron complex, providing support to isonicotinoyl radical formation as a requirement for activity. Nonetheless, the pyrazinoic acid hydrazide iron complex showed redox-mediated activation using H2O2 with generation of a pyrazinoyl radical intermediate and production of pyrazinoic acid, which is in fact the active metabolite of pyrazinamide prodrug. Thereby, this strategy can also unveil new opportunities for activation of this type of drug.


Asunto(s)
Antituberculosos/farmacología , Complejos de Coordinación/farmacología , Compuestos Ferrosos/farmacología , Isoniazida/análogos & derivados , Isoniazida/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/química , Isoniazida/síntesis química , Isoniazida/química , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Mycobacterium tuberculosis/efectos de los fármacos , Oxidación-Reducción
20.
Chemistry ; 22(31): 10736-42, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27140418

RESUMEN

A new concept is presented, namely the synthesis of dendrimers intrinsically composed in alternation of building blocks pertaining to two known families of dendrimers: phosphorhydrazone dendrimers and triazine-piperazine dendrimers. These mixed dendrimers with layered controlled architecture inherit their easy (31) P NMR characterization and their thermal stability from the phosphorhydrazone family, and their decreased solubility from the triazine-piperazine family. However, they have also their own and original characteristics. Both parent families are white powders, whereas the mixed dendrimers are yellow, orange, or red powders, depending on the generation. DFT calculations were carried out on model dendrons to understand these special color features. Remarkably, these dendrimers incorporating redox-active organic entities allow for the first time the monitoring of the growth of an organic dendrimer by electrochemistry while highlighting an even-odd generation behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...