Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Diabetes ; 73(9): 1495-1512, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905153

RESUMEN

Despite advances in treatment, atherosclerotic cardiovascular disease remains the leading cause of death in patients with diabetes. Even when risk factors are mitigated, the disease progresses, and thus, newer targets need to be identified that directly inhibit the underlying pathobiology of atherosclerosis in diabetes. A single-cell sequencing approach was used to distinguish the proatherogenic transcriptional profile in aortic cells in diabetes using a streptozotocin-induced diabetic Apoe-/- mouse model. Human carotid endarterectomy specimens from individuals with and without diabetes were also evaluated via immunohistochemical analysis. Further mechanistic studies were performed in human aortic endothelial cells (HAECs) and human THP-1-derived macrophages. We then performed a preclinical study using an activator protein-1 (AP-1) inhibitor in a diabetic Apoe-/- mouse model. Single-cell RNA sequencing analysis identified the AP-1 complex as a novel target in diabetes-associated atherosclerosis. AP-1 levels were elevated in carotid endarterectomy specimens from individuals with diabetes compared with those without diabetes. AP-1 was validated as a mechanosensitive transcription factor via immunofluorescence staining for regional heterogeneity of endothelial cells of the aortic region exposed to turbulent blood flow and by performing microfluidics experiments in HAECs. AP-1 inhibition with T-5224 blunted endothelial cell activation as assessed by a monocyte adhesion assay and expression of genes relevant to endothelial function. Furthermore, AP-1 inhibition attenuated foam cell formation. Critically, treatment with T-5224 attenuated atherosclerosis development in diabetic Apoe-/- mice. This study has identified the AP-1 complex as a novel target, the inhibition of which treats the underlying pathobiology of atherosclerosis in diabetes.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Experimental , Análisis de la Célula Individual , Factor de Transcripción AP-1 , Animales , Aterosclerosis/metabolismo , Aterosclerosis/genética , Humanos , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicaciones , Masculino , Células Endoteliales/metabolismo , Análisis de Secuencia de ARN
2.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069998

RESUMEN

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas , Ratones , Animales , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Liraglutida/farmacología , Liraglutida/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/genética , Diabetes Mellitus Experimental/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Inflamación
3.
Adv Mater ; 35(21): e2210392, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36908046

RESUMEN

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Asunto(s)
Diabetes Mellitus Experimental , Ratones , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/uso terapéutico , Insulina
4.
Sci Rep ; 12(1): 11570, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798762

RESUMEN

Atherosclerosis and its complications are major causes of cardiovascular morbidity and death. Apart from risk factors such as hypercholesterolemia and inflammation, the causal molecular mechanisms are unknown. One proposed causal mechanism involves elevated levels of reactive oxygen species (ROS). Indeed, early expression of the ROS forming NADPH oxidase type 5 (Nox5) in vascular endothelial cells correlates with atherosclerosis and aortic aneurysm. Here we test the pro-atherogenic Nox5 hypothesis using mouse models. Because Nox5 is missing from the mouse genome, a knock-in mouse model expressing human Nox5 in its physiological location of endothelial cells (eNOX5ki/ki) was tested as a possible new humanised mouse atherosclerosis model. However, whether just on a high cholesterol diet or by crossing in aortic atherosclerosis-prone ApoE-/- mice with and without induction of diabetes, Nox5 neither induced on its own nor aggravated aortic atherosclerosis. Surprisingly, however, diabetic ApoE-/- x eNOX5ki/ki mice developed aortic aneurysms more than twice as often correlating with lower vascular collagens, as assessed by trichrome staining, without changes in inflammatory gene expression, suggesting that endothelial Nox5 directly affects extracellular matrix remodelling associated with aneurysm formation in diabetes. Thus Nox5-derived reactive oxygen species are not a new independent mechanism of atherosclerosis but may enhance the frequency of abdominal aortic aneurysms in the context of diabetes. Together with similar clinical findings, our preclinical target validation opens up a first-in-class mechanism-based approach to treat or even prevent abdominal aortic aneurysms.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aterosclerosis , Diabetes Mellitus , NADPH Oxidasa 5 , Animales , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Ratones , Ratones Noqueados para ApoE , NADPH Oxidasa 5/metabolismo , Oxígeno , Especies Reactivas de Oxígeno/metabolismo
5.
Endocrinol Diabetes Metab ; 4(3): e00278, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34277994

RESUMEN

AIMS: The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS: To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS: Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS: These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Membrana Basal Glomerular/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Podocitos/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
6.
Sci Adv ; 7(14)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33789895

RESUMEN

Intake of processed foods has increased markedly over the past decades, coinciding with increased microvascular diseases such as chronic kidney disease (CKD) and diabetes. Here, we show in rodent models that long-term consumption of a processed diet drives intestinal barrier permeability and an increased risk of CKD. Inhibition of the advanced glycation pathway, which generates Maillard reaction products within foods upon thermal processing, reversed kidney injury. Consequently, a processed diet leads to innate immune complement activation and local kidney inflammation and injury via the potent proinflammatory effector molecule complement 5a (C5a). In a mouse model of diabetes, a high resistant starch fiber diet maintained gut barrier integrity and decreased severity of kidney injury via suppression of complement. These results demonstrate mechanisms by which processed foods cause inflammation that leads to chronic disease.


Asunto(s)
Inflamación , Insuficiencia Renal Crónica , Animales , Dieta , Femenino , Alimentos , Humanos , Inflamación/etiología , Masculino , Ratones , Permeabilidad
7.
Handb Exp Pharmacol ; 264: 395-423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32809100

RESUMEN

A range of chemically different compounds are known to inhibit the formation and accumulation of advanced glycation end products (AGEs) or disrupt associated signalling pathways. There is evidence that some of these agents can provide end-organ protection in chronic diseases including diabetes. Whilst this group of therapeutics are structurally and functionally different and have a range of mechanisms of action, they ultimately reduce the deleterious actions and the tissue burden of advanced glycation end products. To date it remains unclear if this is due to the reduction in tissue AGE levels per se or the modulation of downstream signal pathways. Some of these agents either stimulate antioxidant defence or reduce the formation of reactive oxygen species (ROS), modify lipid profiles and inhibit inflammation. A number of existing treatments for glucose lowering, hypertension and hyperlipidaemia are also known to reduce AGE formation as a by-product of their action. Targeted AGE formation inhibitors or AGE cross-link breakers have been developed and have shown beneficial effects in animal models of diabetic complications as well as other chronic conditions. However, only a few of these agents have progressed to clinical development. The failure of clinical translation highlights the importance of further investigation of the advanced glycation pathway, the diverse actions of agents which interfere with AGE formation, cross-linking or AGE receptor activation and their effect on the development and progression of chronic diseases including diabetic complications. Advanced glycation end products (AGEs) are (1) proteins or lipids that become glycated as a result of exposure to sugars or (2) non-proteinaceous oxidised lipids. They are implicated in ageing and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney and Alzheimer's disease. Several antihypertensive and antidiabetic agents and statins also indirectly lower AGEs. Direct AGE inhibitors currently investigated include pyridoxamine and epalrestat, the inhibition of the formation of reactive dicarbonyls such as methylglyoxal as an important precursor of AGEs via increased activation of the detoxifying enzyme Glo-1 and inhibitors of NOX-derived ROS to reduce the AGE/RAGE signalling.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Animales , Hipoglucemiantes , Especies Reactivas de Oxígeno , Receptor para Productos Finales de Glicación Avanzada
8.
Nephrol Dial Transplant ; 36(6): 988-997, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33367789

RESUMEN

BACKGROUND: The nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (Nox4) mediates reactive oxygen species (ROS) production and renal fibrosis in diabetic kidney disease (DKD) at the level of the podocyte. However, the mitochondrial localization of Nox4 and its role as a mitochondrial bioenergetic sensor has recently been reported. Whether Nox4 drives pathology in DKD within the proximal tubular compartment, which is densely packed with mitochondria, is not yet known. METHODS: We generated a proximal tubular-specific Nox4 knockout mouse model by breeding Nox4flox/flox mice with mice expressing Cre recombinase under the control of the sodium-glucose cotransporter-2 promoter. Subsets of Nox4ptKO mice and their Nox4flox/flox littermates were injected with streptozotocin (STZ) to induce diabetes. Mice were followed for 20 weeks and renal injury was assessed. RESULTS: Genetic ablation of proximal tubular Nox4 (Nox4ptKO) resulted in no change in renal function and histology. Nox4ptKO mice and Nox4flox/flox littermates injected with STZ exhibited the hallmarks of DKD, including hyperfiltration, albuminuria, renal fibrosis and glomerulosclerosis. Surprisingly, diabetes-induced renal injury was not improved in Nox4ptKO STZ mice compared with Nox4flox/flox STZ mice. Although diabetes conferred ROS overproduction and increased the mitochondrial oxygen consumption rate, proximal tubular deletion of Nox4 did not normalize oxidative stress or mitochondrial bioenergetics. CONCLUSIONS: Taken together, these results demonstrate that genetic deletion of Nox4 from the proximal tubules does not influence DKD development, indicating that Nox4 localization within this highly energetic compartment is dispensable for chronic kidney disease pathogenesis in the setting of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/genética , Riñón , Túbulos Renales , Túbulos Renales Proximales , Ratones , NADP , NADPH Oxidasa 4/genética , NADPH Oxidasas/genética , Especies Reactivas de Oxígeno
9.
Front Physiol ; 11: 518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581831

RESUMEN

It is well established that diabetes is the major cause of chronic kidney disease worldwide. Both hyperglycemia, and more recently, advanced glycation endproducts, have been shown to play critical roles in the development of kidney disease. Moreover, the renin-angiotensin system along with growth factors and cytokines have also been shown to contribute to the onset and progression of diabetic kidney disease; however, the role of lipids in this context is poorly characterized. The current study aimed to compare the effect of 20 weeks of streptozotocin-induced diabetes or western diet feeding on kidney disease in two different mouse strains, C57BL/6 mice and hyperlipidemic apolipoprotein (apo) E knockout (KO) mice. Mice were fed a chow diet (control), a western diet (21% fat, 0.15% cholesterol) or were induced with streptozotocin-diabetes (55 mg/kg/day for 5 days) then fed a chow diet and followed for 20 weeks. The induction of diabetes was associated with a 3-fold elevation in glycated hemoglobin and an increase in kidney to body weight ratio regardless of strain (p < 0.0001). ApoE deficiency significantly increased plasma cholesterol and triglyceride levels and feeding of a western diet exacerbated these effects. Despite this, urinary albumin excretion (UAE) was elevated in diabetic mice to a similar extent in both strains (p < 0.0001) but no effect was seen with a western diet in either strain. Diabetes was also associated with extracellular matrix accumulation in both strains, and western diet feeding to a lesser extent in apoE KO mice. Consistent with this, an increase in renal mRNA expression of the fibrotic marker, fibronectin, was observed in diabetic C57BL/6 mice (p < 0.0001). In summary, these studies demonstrate disparate effects of diabetes and hyperlipidemia on kidney injury, with features of the diabetic milieu other than lipids suggested to play a more prominent role in driving renal pathology.

10.
Sci Rep ; 9(1): 13664, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541173

RESUMEN

The accumulation of advanced glycation end products (AGEs) have been implicated in the development and progression of diabetic kidney disease (DKD). There has been interest in investigating the potential of AGE clearance receptors, such as oligosaccharyltransferase-48 kDa subunit (OST48) to prevent the detrimental effects of excess AGE accumulation seen in the diabetic kidney. Here the objective of the study was to increase the expression of OST48 to examine if this slowed the development of DKD by facilitating the clearance of AGEs. Groups of 8-week-old heterozygous knock-in male mice (n = 9-12/group) over-expressing the gene encoding for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-) and litter mate controls were randomised to either (i) no diabetes or (ii) diabetes induced via multiple low-dose streptozotocin and followed for 24 weeks. By the study end, global over expression of OST48 increased glomerular OST48. This facilitated greater renal excretion of AGEs but did not affect circulating or renal AGE concentrations. Diabetes resulted in kidney damage including lower glomerular filtration rate, albuminuria, glomerulosclerosis and tubulointerstitial fibrosis. In diabetic mice, tubulointerstitial fibrosis was further exacerbated by global increases in OST48. There was significantly insulin effectiveness, increased acute insulin secretion, fasting insulin concentrations and AUCinsulin observed during glucose tolerance testing in diabetic mice with global elevations in OST48 when compared to diabetic wild-type littermates. Overall, this study suggested that despite facilitating urinary-renal AGE clearance, there were no benefits observed on kidney functional and structural parameters in diabetes afforded by globally increasing OST48 expression. However, the improvements in insulin secretion seen in diabetic mice with global over-expression of OST48 and their dissociation from effects on kidney function warrant future investigation.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/genética , Productos Finales de Glicación Avanzada/sangre , Hexosiltransferasas/genética , Insulina/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Hexosiltransferasas/metabolismo , Pruebas de Función Hepática , Masculino , Ratones , Estreptozocina
11.
Diabetes ; 67(5): 960-973, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29449307

RESUMEN

Signaling via the receptor of advanced glycation end products (RAGE)-though complex and not fully elucidated in the setting of diabetes-is considered a key injurious pathway in the development of diabetic nephropathy (DN). We report here that RAGE deletion resulted in increased expression of fibrotic markers (collagen I and IV, fibronectin) and the inflammatory marker MCP-1 in primary mouse mesangial cells (MCs) and in kidney cortex. RNA sequencing analysis in MCs from RAGE-/- and wild-type mice confirmed these observations. Nevertheless, despite these gene expression changes, decreased responsiveness to transforming growth factor-ß was identified in RAGE-/- mice. Furthermore, RAGE deletion conferred a more proliferative phenotype in MCs and reduced susceptibility to staurosporine-induced apoptosis. RAGE restoration experiments in RAGE-/- MCs largely reversed these gene expression changes, resulting in reduced expression of fibrotic and inflammatory markers. This study highlights that protection against DN in RAGE knockout mice is likely to be due in part to the decreased responsiveness to growth factor stimulation and an antiapoptotic phenotype in MCs. Furthermore, it extends our understanding of the role of RAGE in the progression of DN, as RAGE seems to play a key role in modulating the sensitivity of the kidney to injurious stimuli such as prosclerotic cytokines.


Asunto(s)
Apoptosis/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/genética , Corteza Renal/metabolismo , Células Mesangiales/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Animales , Proliferación Celular/genética , Supervivencia Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Riñón/efectos de los fármacos , Riñón/metabolismo , Corteza Renal/efectos de los fármacos , Células Mesangiales/efectos de los fármacos , Ratones , Ratones Noqueados , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología
12.
Sci Rep ; 7(1): 15154, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123173

RESUMEN

In-vitro studies suggest that vitamin D reduces inflammation by inhibiting nuclear factor kappa-B (NFκB) activity. Yet, no trials have examined the effects of vitamin D supplementation on NFκB activity in-vivo in humans. We conducted a double-blind randomized trial (RCT) examining effects of vitamin D supplementation on inflammatory markers and NFκB activity in peripheral blood mononuclear cells (PBMCs). Sixty-five overweight/obese, vitamin D-deficient (25-hydroxyvitamin D [25(OH)D] ≤ 50 nmol/L) adults were randomized to a single 100,000 IU bolus followed by 4,000 IU daily cholecalciferol or matching placebo for 16 weeks. We measured BMI, % body fat, serum 25(OH)D, high-sensitivity C-reactive protein (hsCRP), tumour necrosis factor (TNF), monocyte chemoattractant protein-1 (MCP-1), interferon-gamma (IFN-γ), several interleukins, and NFκB activity in PBMCs. Fifty-four participants completed the study. Serum 25(OH)D concentrations increased with vitamin D supplementation compared to placebo (p < 0.001). Vitamin D and placebo groups did not differ in any inflammatory markers or NFκB activity (all p > 0.05). Results remained non-significant after adjustment for age, sex, and % body fat, and after further adjustment for sun exposure, physical activity, and dietary vitamin D intake. Although in-vitro studies report anti-inflammatory effects of vitamin D, our RCT data show no effect of vitamin D supplementation on inflammatory markers or NFκB activity in-vivo in humans.


Asunto(s)
Antiinflamatorios/administración & dosificación , Inflamación/patología , FN-kappa B/metabolismo , Obesidad/complicaciones , Vitamina D/administración & dosificación , Adulto , Australia , Análisis Químico de la Sangre , Citocinas/análisis , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Leucocitos Mononucleares/química , Masculino , Placebos/administración & dosificación , Resultado del Tratamiento
13.
Sci Rep ; 7(1): 12292, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947796

RESUMEN

The protein oligosaccharyltransferase-48 (OST48) is integral to protein N-glycosylation in the endoplasmic reticulum (ER) but is also postulated to act as a membrane localised clearance receptor for advanced glycation end-products (AGE). Hepatic ER stress and AGE accumulation are each implicated in liver injury. Hence the objective of this study was to increase the expression of OST48 and examine the effects on hepatic function and structure. Groups of 8 week old male mice (n = 10-12/group) over-expressing the gene for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-), were followed for 24 weeks, while randomised to diets either low or high in AGE content. By week 24 of the study, either increasing OST48 expression or consumption of high AGE diet impaired liver function and modestly increased hepatic fibrosis, but their combination significantly exacerbated liver injury in the absence of steatosis. DDOST+/- mice had increased both portal delivery and accumulation of hepatic AGEs leading to central adiposity, insulin secretory defects, shifted fuel usage to fatty and ketoacids, as well as hepatic glycogen accumulation causing hepatomegaly along with hepatic ER and oxidative stress. This study revealed a novel role of the OST48 and AGE axis in hepatic injury through ER stress, changes in fuel utilisation and glucose intolerance.


Asunto(s)
Productos Finales de Glicación Avanzada/efectos adversos , Hexosiltransferasas/metabolismo , Cirrosis Hepática/patología , Proteínas de la Membrana/metabolismo , Animales , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Conducta Alimentaria , Productos Finales de Glicación Avanzada/sangre , Productos Finales de Glicación Avanzada/metabolismo , Hexosiltransferasas/genética , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/sangre , Cirrosis Hepática/etiología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal
14.
Am J Clin Nutr ; 103(6): 1426-33, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27030534

RESUMEN

BACKGROUND: The consumption of advanced glycation end products (AGEs) has increased because of modern food processing and has been linked to the development of type 2 diabetes in rodents. OBJECTIVE: We determined whether changing dietary AGE intake could modulate insulin sensitivity and secretion in healthy, overweight individuals. DESIGN: We performed a double-blind, randomized, crossover trial of diets in 20 participants [6 women and 14 men; mean ± SD body mass index (in kg/m(2)): 29.8 ± 3.7]. Isoenergetic- and macronutrient-matched diets that were high or low in AGE content were alternately consumed for 2 wk and separated by a 4-wk washout period. At the beginning and end of each dietary period, a hyperinsulinemic-euglycemic clamp and an intravenous glucose tolerance test were performed. Dietary, plasma and urinary AGEs N(€)-(carboxymethyl)lysine (CML), N(€)-(carboxyethyl)lysin (CEL), and methylglyoxal-derived hydroimadazolidine (MG-H1) were measured with the use of mass spectrometry. RESULTS: Participants consumed less CML, CEL, and MG-H1 during the low-AGE dietary period than during the high-AGE period (all P < 0.05), which was confirmed by changes in urinary AGE excretion. There was an overall difference in insulin sensitivity of -2.1 mg · kg(-1) · min(-1) between diets (P = 0.001). Insulin sensitivity increased by 1.3 mg · kg(-1) · min(-1) after the low-AGE diet (P = 0.004), whereas it showed a tendency to decrease by 0.8 mg · kg(-1) · min(-1) after the high-AGE diet (P = 0.086). There was no difference in body weight or insulin secretion between diets (P = NS). CONCLUSIONS: A diet that is low in AGEs may reduce the risk of type 2 diabetes by increasing insulin sensitivity. Hence, a restriction in dietary AGE content may be an effective strategy to decrease diabetes and cardiovascular disease risks in overweight individuals. This trial was registered at clinicaltrials.gov as NCT00422253.


Asunto(s)
Dieta , Productos Finales de Glicación Avanzada/administración & dosificación , Resistencia a la Insulina/fisiología , Sobrepeso/dietoterapia , Adulto , Glucemia/análisis , Estudios Cruzados , Método Doble Ciego , Femenino , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Productos Finales de Glicación Avanzada/sangre , Productos Finales de Glicación Avanzada/orina , Humanos , Imidazolidinas/sangre , Imidazolidinas/orina , Insulina/sangre , Lisina/análogos & derivados , Lisina/sangre , Lisina/orina , Masculino , Persona de Mediana Edad , Piruvaldehído/sangre , Piruvaldehído/orina
15.
Clin Sci (Lond) ; 130(9): 711-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26831938

RESUMEN

Oxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks), a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells (PTECs) of diabetic kidneys were clearly apparent, but no changes in urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide (H2O2) generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary kidney injury molecule-1 (KIM-1) excretion, where an increase in the Complex I-linked oxygen consumption rate (OCR), in the context of a decrease in kidney ATP, indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may precede the development of the renal lesion in diabetes, and this supports the hypothesis that mitochondrial dysfunction is a primary cause of DKD.


Asunto(s)
Adaptación Fisiológica , Diabetes Mellitus Experimental/patología , Riñón/patología , Mitocondrias/metabolismo , Albuminuria , Animales , ADN Mitocondrial/genética , Diabetes Mellitus Experimental/genética , Metabolismo Energético , Riñón/metabolismo , Túbulos Renales/patología , Masculino , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo , Fenotipo , Ratas Sprague-Dawley , Factores de Tiempo , Regulación hacia Arriba
16.
Diabetes ; 65(4): 1085-98, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26822084

RESUMEN

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD). Here, we report that partial knockdown of Aif in mice recapitulates many features of CKD, in association with a compensatory increase in the mitochondrial ATP pool via a shift toward mitochondrial fusion, excess mitochondrial reactive oxygen species production, and Nox4 upregulation. However, despite a 50% lower AIF protein content in the kidney cortex, there was no loss of complex I activity or assembly. When diabetes was superimposed onto Aif knockdown, there were extensive changes in mitochondrial function and networking, which augmented the renal lesion. Studies in patients with diabetic nephropathy showed a decrease in AIF within the renal tubular compartment and lower AIFM1 renal cortical gene expression, which correlated with declining glomerular filtration rate. Lentiviral overexpression of Aif1m rescued glucose-induced disruption of mitochondrial respiration in human primary proximal tubule cells. These studies demonstrate that AIF deficiency is a risk factor for the development of diabetic kidney disease.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/genética , Mitocondrias/metabolismo , Insuficiencia Renal Crónica/genética , Animales , Respiración de la Célula/genética , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Predisposición Genética a la Enfermedad , Homeostasis/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Fosforilación Oxidativa , Insuficiencia Renal Crónica/metabolismo , Factores de Riesgo
17.
Curr Drug Targets ; 17(11): 1252-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26201485

RESUMEN

Diabetic nephropathy is the major cause of end-stage renal disease in Western societies. To date, interruption of the Renin-Angiotensin System is the most effective intervention for diabetic nephropathy, however these agents only slow progression of the disease. Thus, there is a major unmet need for new therapeutic targets. Aberrant activation of the receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of diabetic nephropathy via binding to a variety of ligands and inciting reactive oxygen species (ROS) production, inflammation and fibrosis. In recent years there have been considerable efforts in the development of effective RAGE antagonists, however, direct RAGE targeting may be problematic. Glucagon like peptide-1 (GLP-1) is an incretin hormone released by the L-cells of the small intestine to mediate glucose-dependent insulin release from pancreatic islets. The incretin-based therapies, GLP-1 receptor agonists and dipeptidylpeptidase-4 (DPP4) inhibitors, are novel glucose-lowering agents used in type 2 diabetes. However, the extra pancreatic functions of GLP-1 have gained attention, including putative anti-apoptotic and anti-inflammatory properties. In rodent models of diabetes, incretin-based therapies are renoprotective. Interestingly, GLP-1 has been shown to interfere with the signalling and expression of RAGE. The current review aims to give an overview of the interactions between the RAGE and incretin pathways and to discuss the utility of targeting the GLP-1/incretin pathway in DN. It is possible that indirect targeting of RAGE through GLP-1 agonism will be of clinical benefit to patients with diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Incretinas/metabolismo , Terapia Molecular Dirigida , Animales , Nefropatías Diabéticas/fisiopatología , Progresión de la Enfermedad , Diseño de Fármacos , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos
18.
Diabetologia ; 57(9): 1977-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24957662

RESUMEN

AIMS/HYPOTHESIS: The AGEs and the receptor for AGEs (RAGE) are known contributors to diabetic complications. RAGE also has a physiological role in innate and adaptive immunity and is expressed on immune cells. The aim of this study was to determine whether deletion of RAGE from bone-marrow-derived cells influences the pathogenesis of experimental diabetic nephropathy. METHODS: Groups (n = 8/group) of lethally irradiated 8 week old wild-type (WT) mice were reconstituted with bone marrow from WT (WT → WT) or RAGE-deficient (RG) mice (RG → WT). Diabetes was induced using multiple low doses of streptozotocin after 8 weeks of bone marrow reconstitution and mice were followed for a further 24 weeks. RESULTS: Compared with diabetic WT mice reconstituted with WT bone marrow, diabetic WT mice reconstituted with RG bone marrow had lower urinary albumin excretion and podocyte loss, more normal creatinine clearance and less tubulo-interstitial injury and fibrosis. However, glomerular collagen IV deposition, glomerulosclerosis and cortical levels of TGF-ß were not different among diabetic mouse groups. The renal tubulo-interstitium of diabetic RG → WT mice also contained fewer infiltrating CD68(+) macrophages that were activated. Diabetic RG → WT mice had lower renal cortical concentrations of CC chemokine ligand 2 (CCL2), macrophage inhibitory factor (MIF) and IL-6 than diabetic WT → WT mice. Renal cortical RAGE ligands S100 calgranulin (S100A)8/9 and AGEs, but not high mobility box protein B-1 (HMGB-1) were also decreased in diabetic RG → WT compared with diabetic WT → WT mice. In vitro, bone-marrow-derived macrophages from WT but not RG mice stimulated collagen IV production in cultured proximal tubule cells. CONCLUSIONS/INTERPRETATION: These studies suggest that RAGE expression on haemopoietically derived immune cells contributes to the functional changes seen in diabetic nephropathy by promoting macrophage infiltration and renal tubulo-interstitial damage.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Riñón/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Macrófagos/metabolismo , Masculino , Ratones , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética
19.
Clin Chem Lab Med ; 52(1): 129-38, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23525877

RESUMEN

BACKGROUND: High levels of circulating advanced glycation end products (AGEs) can initiate chronic low-grade activation of the immune system (CLAIS) with each of these factors independently associated with cardiovascular (CV) morbidity and mortality. Therefore, our objective was to characterize the relationship between serum AGEs, CLAIS and other risk factors for CV disease in normotensive non-diabetic individuals. METHODS: We measured body mass index (BMI), waist-to-hip ratio (WHR), blood pressure, lipid and glucose profile in 44 non-diabetic volunteers (17 female, 27 males). Carboxymethyl-lysine (CML) was measured by ELISA as a marker for circulating AGEs and NF-κB p65 activity as an inflammatory marker by DNA-binding in peripheral blood mononuclear cells lysates (PBMC). RESULTS: Plasma CML concentrations were related to diastolic blood pressure (r=-0.51, p<0.01) independently of age, sex, BMI and WHR (p<0.05). Diastolic blood pressure was also related to NF-κB activity in PBMC (r=0.47, p<0.01) before and after adjustment for age, sex, BMI and WHR (p<0.05). Plasma CML concentrations were related to the pulse pressure before (r=0.42; p<0.05) and after adjustment for age, sex, BMI and waist (p<0.05). Neither CML nor NF-κB activity were related to systolic blood pressure (both p=ns). Plasma CML concentrations were not associated with plasma lipid or glucose concentrations (all p=ns). CONCLUSIONS: Plasma AGE levels and NF-κB activity in PBMC were independent determinants of diastolic and pulse pressure in healthy normotensive individuals. This association suggests a role for AGEs in the etiology of hypertension, possibly via the initiation of CLAIS and aortic stiffening.


Asunto(s)
Presión Sanguínea/fisiología , Productos Finales de Glicación Avanzada/sangre , Factor de Transcripción ReIA/metabolismo , Adolescente , Adulto , Índice de Masa Corporal , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Lípidos/sangre , Lisina/análogos & derivados , Lisina/sangre , Masculino , Persona de Mediana Edad , Relación Cintura-Cadera , Adulto Joven
20.
Amino Acids ; 46(2): 321-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23832534

RESUMEN

It has been postulated that chronic exposure to high levels of advanced glycation end products (AGEs), in particular from dietary sources, can impair insulin secretion. In the present study, we investigated the cross-sectional relationship between AGEs and acute insulin secretion during an intravenous glucose tolerance test (IVGTT) and following a 75 g oral glucose tolerance test (OGTT) in healthy humans. We report the cross-sectional association between circulating AGE concentrations and insulin secretory function in healthy humans (17 F: 27 M, aged 30 ± 10 years) with a wide range of BMI (24.6-31.0 kg/m(2)). Higher circulating concentrations of AGEs were related to increased first phase insulin secretion during IVGTT (r = 0.43; p < 0.05) and lower 2-h glucose concentrations during OGTT (r = -0.31; p < 0.05). In addition, fasting (r = -0.36; p < 0.05) and 2-h glucose concentrations were negatively related to circulating levels of soluble receptor for AGE (RAGE) isoforms (r = -0.39; p < 0.01). In conclusion, in healthy humans, we show a cross-sectional association between advanced glycation end products and acute insulin secretion during glucose tolerance testing.


Asunto(s)
Productos Finales de Glicación Avanzada/sangre , Insulina/metabolismo , Adulto , Glucemia , Estudios Transversales , Femenino , Humanos , Insulina/sangre , Resistencia a la Insulina , Secreción de Insulina , Masculino , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA