Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(5): 2792-2802, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602263

RESUMEN

Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.


Asunto(s)
Ácidos Dicarboxílicos , Proteínas Fúngicas , Furanos , Lipasa , Poliésteres , Polimerizacion , Lipasa/química , Lipasa/metabolismo , Furanos/química , Proteínas Fúngicas/química , Ácidos Dicarboxílicos/química , Poliésteres/química , Poliésteres/síntesis química , Isomerismo , Basidiomycota
2.
Molecules ; 28(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37241868

RESUMEN

The continuous search for novel biobased polymers with high-performance properties has highlighted the role of monofuranic-based polyesters as some of the most promising for future plastic industry but has neglected the huge potential for the polymers' innovation, relatively low cost, and synthesis easiness of 5,5'-isopropylidene bis-(ethyl 2-furoate) (DEbF), obtained from the platform chemical, worldwide-produced furfural. In this vein, poly(1,12-dodecylene 5,5'-isopropylidene -bis(ethyl 2-furoate)) (PDDbF) was introduced, for the first time, as a biobased bisfuranic long-chain aliphatic polyester with an extreme flexibility function, competing with fossil-based polyethylene. This new polyester in-depth characterization confirmed its expected structure (FTIR, 1H, and 13C NMR) and relevant thermal features (DSC, TGA, and DMTA), notably, an essentially amorphous character with a glass transition temperature of -6 °C and main maximum decomposition temperature of 340 °C. Furthermore, PDDbF displayed an elongation at break as high as 732%, around five times higher than that of the 2,5-furandicarboxylic acid counterpart, stressing the unique features of the bisfuranic class of polymers compared to monofuranic ones. The enhanced ductility combined with the relevant thermal properties makes PDDbF a highly promising material for flexible packaging.

3.
Front Chem ; 10: 1056286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561143

RESUMEN

This work explores the conformational preferences and the structure-property correlations of poly(butylene 2,5-furandicarboxylate) (PBF), a longer chain analogue of the most well-known biobased polyester from the furan family, poly(ethylene 2,5-furandicarboxylate) (PEF). A thorough computational spectroscopic study-including infrared, Raman and inelastic neutron scattering spectroscopy, combined with discrete and periodic density functional theory calculations-allowed the identification of dominant structural motifs in the amorphous and crystalline regions. Discrete calculations and vibrational spectroscopy of semi-crystalline and amorphous samples strongly support the predominance of gauche, trans, gauche conformations of the butylene glycol fragment in both the crystalline and amorphous domains. In what concerns the furandicarboxylate fragment, amorphous domains are dominated by syn,syn conformations, while in the crystalline domains the anti,anti forms prevail. A possible crystalline structure-built from these conformational preferences and including a network of C-H···O hydrogen bond contacts-was optimized using periodic density functional theory. This proposed crystal structure avoids the unrealistic structural features of the previously proposed X-ray structure, provides an excellent description of the inelastic neutron scattering spectrum of the semi-crystalline form, and allows the correlation between microscopic structure and macroscopic properties of the polymer.

4.
Polymers (Basel) ; 14(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36146011

RESUMEN

Poly(2,5-furandicarboxylate)s incorporating aliphatic moieties represent a promising family of polyesters, typically entirely based on renewable resources and with tailored properties, notably degradability. This study aims to go beyond by developing poly(isosorbide 2,5-furandicarboxylate-co-dodecanedioate) copolyesters derived from isosorbide (Is), 2,5-furandicarboxylic acid (FDCA), and 1,12-dodecanedioic acid (DDA), and studying their degradation under environmental conditions, often overlooked, namely seawater conditions. These novel polyesters have been characterized in-depth using ATR-FTIR, 1H, and 13C NMR and XRD spectroscopies and thermal analysis (TGA and DSC). They showed enhanced thermal stability (up to 330 °C), and the glass transition temperature increased with the content of FDCA from ca. 9 to 60 °C. Regarding their (bio)degradation, the enzymatic conditions lead to the highest weight loss compared to simulated seawater conditions, with values matching 27% vs. 3% weight loss after 63 days of incubation, respectively. Copolymerization of biobased FDCA, Is, and DDA represents an optimal approach for shaping the thermal/(bio)degradation behaviors of these novel polyesters.

5.
Front Mol Biosci ; 9: 1059116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36660430

RESUMEN

This work addresses the possible role of the cell membrane in the molecular mechanism of action of two salan-type ruthenium complexes that were previously shown to be active against human tumor cells, namely [Ru(III)(L1)(PPh3)Cl] and [Ru(III)(L2)(PPh3)Cl] (where L1 is 6,6'-(1R,2R)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(3-methoxyphenol); and L2 is 2,2'-(1R,2R)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(4-methoxyphenol)). One-component membrane models were first used, a disordered fluid bilayer of dioleoylphosphatodylcholine (DOPC), and an ordered rigid gel bilayer of dipalmitoylphosphatidylcholine. In addition, two quaternary mixtures of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol were used to mimic the lipid composition either of mammalian plasma membrane (1:1:1:1 mol ratio) or of a cancer cell line membrane (36.2:23.6:6.8:33.4 mol ratio). The results show that both salan ligands L1 and L2 bind relatively strongly to DOPC bilayers, but without significantly affecting their structure. The ruthenium complexes have moderate affinity for DOPC. However, their impact on the membranes was notable, leading to a significant increase in the permeability of the lipid vesicles. None of the compounds compromised liposome integrity, as revealed by dynamic light scattering. Fluorescence spectroscopy studies revealed changes in the biophysical properties of all membrane models analyzed in the presence of the two complexes, which promoted an increased fluidity and water penetration into the lipid bilayer in the one-component systems. In the quaternary mixtures, one of the complexes had an analogous effect (increasing water penetration), whereas the other complex reorganized the liquid ordered and liquid disordered domains. Thus, small structural differences in the metal ligands may lead to different outcomes. To better understand the effect of these complexes in cancer cells, the membrane dipole potential was also measured. For both Ru complexes, an increase in the dipole potential was observed for the cancer cell membrane model, while no alteration was detected on the non-cancer plasma membrane model. Our results show that the action of the Ru(III) complexes tested involves changes in the biophysical properties of the plasma membrane, and that it also depends on membrane lipid composition, which is frequently altered in cancer cells when compared to their normal counterparts.

6.
Front Chem ; 8: 585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850625

RESUMEN

This critical review considers the extensive research and development dedicated, in the last years, to a single polymer, the poly(ethylene 2,5-furandicarboxylate), usually simply referred to as PEF. PEF importance stems from the fact that it is based on renewable resources, typically prepared from C6 sugars present in biomass feedstocks, for its resemblance to the high-performance poly(ethylene terephthalate) (PET) and in terms of barrier properties even outperforming PET. For the first time synthesis, properties, and end-life targeting-a more sustainable PEF-are critically reviewed. The emphasis is placed on how synthetic roots to PEF evolved toward the development of greener processes based on ring open polymerization, enzymatic synthesis, or the use of ionic liquids; together with a broader perspective on PEF end-life, highlighting recycling and (bio)degradation solutions.

7.
Environ Sci Pollut Res Int ; 27(29): 36463-36475, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32556991

RESUMEN

Spent brewery grains, a by-product of the brewing process, were used as precursor of biochars and activated carbons to be applied to the removal of pharmaceuticals from water. Biochars were obtained by pyrolysis of the raw materials, while activated carbons were produced by adding a previous chemical activation step. The influence of using different precursors (from distinct fermentation processes), activating agents (potassium hydroxide, sodium hydroxide, and phosphoric acid), pyrolysis temperatures, and residence times was assessed. The adsorbents were physicochemically characterized and applied to the removal of the antiepileptic carbamazepine from water. Potassium hydroxide activation produced the materials with the most promising properties and adsorptive removals, with specific surface areas up to 1120 m2 g-1 and maximum adsorption capacities up to 190 ± 27 mg g-1 in ultrapure water. The adsorption capacity suffered a reduction of < 70% in wastewater, allowing to evaluate the impact of realistic matrices on the efficiency of the materials.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Agua , Adsorción , Carbamazepina/análisis , Carbón Orgánico , Aguas Residuales
8.
Materials (Basel) ; 12(14)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340461

RESUMEN

The worldwide regulatory demand for the elimination of non-phthalate compounds for poly(vinyl chloride) (PVC) plasticization has intensified the search for alternatives. Concomitantly, sustainability concerns have highlighted sugar-based 2,5-furandicarboxylic acid as one key renewable-chemical for the development of several products, namely di(2-ethylhexyl) 2,5-furandicarboxylate (DEHF) plasticizer. This study addresses the use of DEHF under a realistic scenario of the co-existence of both DEHF and entirely fossil-based plasticizers. More precisely, original PVC blends using mixtures of non-toxic DEHF and di(2-ethylhexyl) terephthalate ester (DEHT) were designed. The detailed structural, thermal, and mechanical characterization of these materials showed that they all have a set of interesting properties that are compatible with those of commercial DEHT, namely a low glass transition (19.2-23.8 °C) and enhanced elongation at break (up to 330%). Importantly, migration tests under different daily situations, such as for example exudation from food/beverages packages and medical blood bags, reveal very low weight loss percentages. For example, in both distilled water and phosphate buffered saline (PBS) solution, weight loss does not exceed ca. 0.3% and 0.2%, respectively. Viability tests show, for the first time, that up to 500 µM of DEHF, a promising cytotoxic profile is observed, as well as for DEHT. Overall, this study demonstrates that the combination of DEHF and DEHT plasticizers result in a noticeable plasticized PVC with an increased green content with promising cytotoxic results.

9.
Materials (Basel) ; 12(2)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669649

RESUMEN

Poly(ether ester)s (PEEs) represent a promising class of segmented co-polymers, nevertheless the synthesis of PEEs based on renewable 2,5-furandicarboxylic acid (FDCA) is still scarce. In this context, a series of poly(1,4-butylene 2,5-furandicarboxylate)-co-poly(poly(propylene oxide) 2,5-furandicarboxylate) co-polyesters with different composition of stiff poly(1,4-butylene 2,5-furandicarboxylate) (PBF) and soft poly(poly(propylene oxide) 2,5-furandicarboxylate) (PPOF) moieties were synthesized, via a two-step bulk polytransesterification reaction. The molar ratio of PBF/PPOF incorporated was varied (10 to 50 mol%) in order to prepare several novel materials with tuned properties. The materials were characterised in detail through several techniques, namely ATR FTIR, ¹H and 13C NMR, TGA, DSC, DMTA and XRD. Their hydrolytic and enzymatic degradation evaluation was also assessed. These new co-polymers showed either a semi-crystalline nature when higher PBF/PPOF ratios were used, and for approximately equal amounts of PBF and PPOF an amorphous co-polyester was obtained instead.

10.
Pharm Res ; 34(9): 1934-1943, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28623473

RESUMEN

PURPOSE: To investigate the influence of the polymerization technique and the content of hydroxyl groups on the performance of new bile acid sequestrants based on PAMPMTA-co-PHEA (PAMPTMA: poly((3-acrylamidopropyl)trimethylammonium chloride); PHEA: poly(2-hydroxyethyl acrylate)) hydrogels. METHODS: PAMPMTA-co-PHEA hydrogels were prepared using either free radical polymerization or supplemental activator and reducing agent atom transfer radical polymerization. The chemical structure and composition of the hydrogels was confirmed by both FTIR and ssNMR. The binding of sodium cholate as the model bile salt was evaluated in simulated intestinal fluid using HPLC. The degradation of the polymers was evaluated in vitro in solutions mimicking the gastrointestinal tract environment. RESULTS: The binding showed that an increase of the amount of HEA in the hydrogel lead to a decrease of the binding capacity. In addition, it was demonstrated for the first time that the hydrogels produced by SARA ATRP presented a higher binding capacity than similar ones produced by FRP. Finally, it was observed that copolymers of PAMPTMA-co-PHEA showed no sign of degradation in solutions mimicking both the stomach and the intestine environment. CONCLUSIONS: The use of an advanced polymerization technique, such as the SARA ATRP, could be beneficial for the preparation of BAS with enhanced performance.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Polihidroxietil Metacrilato/análogos & derivados , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Sitios de Unión , Humanos , Hidrogeles/síntesis química , Oxidación-Reducción , Polihidroxietil Metacrilato/síntesis química , Polihidroxietil Metacrilato/química , Polihidroxietil Metacrilato/farmacología , Polimerizacion , Compuestos de Amonio Cuaternario/síntesis química , Colato de Sodio/metabolismo
11.
Int J Biol Macromol ; 93(Pt A): 686-694, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27632951

RESUMEN

The main purpose of this study was to investigate the potential of suberin (a naturally occurring aromatic-aliphatic polyester ubiquitous to the vegetable realm) as a renewable source of chemicals and, in particular, to assess their physical properties. A comparison between cork and birch suberin fragments obtained by conventional depolymerisation processes (hydrolysis or methanolysis) is provided, focusing essentially on their thermal and crystallinity properties. It was found that suberin fragments obtained by the hydrolysis depolymerisation of birch had a high degree of crystallinity, as indicated by their thermal analysis and corroborated by the corresponding XRD diffractions, as opposed to hydrolysis-depolymerised cork suberin counterparts, which were essentially amorphous.


Asunto(s)
Betula/química , Lípidos/química , Corteza de la Planta/química , Quercus/química
12.
Biomacromolecules ; 15(5): 1806-13, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24670155

RESUMEN

Biopolymers often have unique properties of considerable interest as a basis for new materials. It is however not evident how to extract them from plants without destroying their chemical skeleton and inherent properties. Here we report the ex situ reconstitution of the biopolyester suberin as a new waterproof and antimicrobial material. In plant cell walls, suberin, a cross-linked network of aromatic and aliphatic monomers, builds up a hydrophobic protective and antimicrobial barrier. Recently we succeeded in extracting suberin from the plant cell wall using the ionic liquid cholinium hexanoate. During extraction the native three-dimensional structure of suberin was partially preserved. In this study, we demonstrate that this preservation is the key for its ex situ reconstitution. Without any chemical additives or purification, the suberin composing macromolecules undergo self-association on the casting surface forming a film. Suberin films obtained show barrier properties similar to those of the suberin barrier in plants, including a potentially broad bactericidal effect.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Lípidos/química , Lípidos/farmacología , Quercus/química , Antibacterianos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Lípidos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Quercus/citología , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Propiedades de Superficie , Humectabilidad
13.
Appl Spectrosc ; 63(8): 873-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19678983

RESUMEN

The use of trichloroacetyl isocyanate (TAI) to mark both hydroxyl and carboxyl groups borne by the hydrolysis or methanolysis of suberin fragments (a complex mixture of hydroxy fatty acids), allowed the quantitative assessment of the ratio between carboxyl and hydroxy groups, as well as the ratio between primary and secondary hydroxy groups, to be carried out reliably by 1H nuclear magnetic resonance (NMR) spectroscopy. All the samples thus analyzed displayed an excess of CO2H (or CO2CH3) functions with respect to the OH counterparts, albeit to a variable extent, depending on the procedure adopted to isolate the suberin fragments. The precise knowledge of the molar ratio of these two reactive moieties is fundamental for the correct utilization of suberin monomers in polymerization reactions leading to aliphatic polyesters.


Asunto(s)
Mezclas Complejas/análisis , Ácidos Grasos/análisis , Hidroxiácidos/análisis , Resonancia Magnética Nuclear Biomolecular/métodos , Isocianatos/química , Lípidos/química
14.
ChemSusChem ; 1(12): 1020-5, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19040255

RESUMEN

The synthesis of novel polyesters from model long-chain aliphatic monomers and from suberin reactive aliphatic fragments was conducted using mild polycondensation or polytransesterification conditions. The ensuing polyesters were characterized by means of various techniques. When mixtures of simple suberin-like monomers were used, the ensuing polyesters had very regular structures, with melting temperatures around 80 degrees C and glass transitions below room temperature. This first systematic study of the exploitation of suberin as a precursor to novel aliphatic polyesters confirmed the huge potential of using this abundant renewable resource to prepare macromolecular materials for promising applications.


Asunto(s)
Biopolímeros/química , Lípidos/química , Poliésteres/síntesis química , Rastreo Diferencial de Calorimetría , Conservación de los Recursos Naturales , Tecnología Química Verde , Espectroscopía de Resonancia Magnética , Poliésteres/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura de Transición
15.
J Agric Food Chem ; 54(18): 6888-93, 2006 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16939354

RESUMEN

The detailed chemical composition of the lipophilic extractives of cork and cork byproducts generated throughout industrial processing has been investigated by gas chromatography-mass spectrometry. Triterpenes (cerine, friedeline, and betulinic acid) were the major components detected. Betulinic acid is the main triterpene (11.7 g/kg) identified in industrial cork powder, whereas in black condensates friedeline (95.3 g/kg), betuline (13.1 g/kg), and betulinic acid (12.1 g/kg) are the main triperpenes. Significant fractions of alpha-hydroxy fatty acids (115.1 g/kg) and alpha,omega-dicarboxylic acids (21.2 g/kg) were also detected in black condensate after alkaline hydrolysis. The results demonstrate that these two industrial byproducts can be considered as promising sources of bioactive chemicals or chemical intermediates for the synthesis of polymeric materials.


Asunto(s)
Corteza de la Planta/química , Quercus/química , Triterpenos/análisis , Cromatografía de Gases y Espectrometría de Masas , Triterpenos Pentacíclicos , Triterpenos/química , Ácido Betulínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...