Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(7): e09902, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35874087

RESUMEN

The encapsulation of atrazine into poly(epsilon-caprolactone) nanocapsules has been shown to improve the efficiency of the herbicide and decrease its environmental impacts. In the current work, we evaluated the efficiency of nanoatrazine in the post-emergence control of Alternanthera tenella Colla plants and performed a meta-analysis to compare the results with studies already published with other weeds. The first experiment was carried out in the field, where we observed that nanoatrazine (at 200 g a. i. ha-1) induced higher inhibition of the maximum quantum efficiency of photosystem II (up to 39%) than conventional atrazine at the same concentration. However, nanoencapsulation did not improve the visually-determined weed control by atrazine. To better understand the response of A. tenella plants to nanoatrazine, a second experiment was carried out in a greenhouse with four-leaf stage plants treated with nano and conventional atrazine at 200, 500, 1000, and 2000 g a. i. ha-1. Nanoatrazine showed higher efficiency (up to 33%) than commercial atrazine in inhibiting photosystem II activity at all doses until 48 h after application. Again, weed control and plant dry mass did not differ between formulations. From the meta-analysis, it was observed that A. tenella plants showed a response to nanoatrazine that differs from other target species, as the gain in efficiency resulting from the nanoencapsulation was restricted to the short-term analysis, and did not result in better weed control. These results reinforce that the efficiency of nanoatrazine is dependent on the studied species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...