Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(30): 12627-12640, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39011568

RESUMEN

Antimicrobial resistance has become a global threat to human health, which is coupled with the lack of novel drugs. Metallocompounds have emerged as promising diverse scaffolds for the development of new antibiotics. Herein, we prepared some metal compounds mainly focusing on cis-[Ru(bpy)(dppz)(SO3)(NO)](PF6) (PR02, bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine), in which phenazinic and nitric oxide ligands along with sulfite conferred some key properties. This compound exhibited a redox potential for bound NO+/0 of -0.252 V (vs. Ag|AgCl) and a high pH for nitrosyl-nitro conversion of 9.16, making the nitrosyl ligand the major species. These compounds were still able to bind to DNA structures. Interestingly, reduced glutathione (GSH) was unable to promote significant NO/HNO release, an uncommon feature of many similar systems. However, this reducing agent was essential to generate superoxide radicals. Antimicrobial studies were carried out using six bacterial strains, where none or very low activity was observed for Gram-negative bacteria. However, PR02 and PR (cis-[Ru(bpy)(dppz)Cl2]) showed high antibacterial activity in some Gram-positive strains (MBC for S. aureus up to 4.9 µmol L-1), where the activity of PR02 was similar to or at least 4-fold better than that of PR. Besides, PR02 showed capacity to inhibit bacterial biofilm formation, a major health issue leading to bacterial tolerance to antibiotics. Interestingly, we also showed that PR02 can function in synergism with the known antibiotic ampicillin, improving their action up to 4-fold even against resistant strains. Altogether, these results showed that PR02 is a promising antimicrobial nitrosyl ruthenium compound combining features beyond its killing action, which deserves further biological studies.


Asunto(s)
Antibacterianos , Biopelículas , Complejos de Coordinación , Pruebas de Sensibilidad Microbiana , Fenazinas , Rutenio , Fenazinas/química , Fenazinas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Rutenio/química , Rutenio/farmacología , Biopelículas/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Sinergismo Farmacológico , Staphylococcus aureus/efectos de los fármacos
2.
Dalton Trans ; 52(16): 5176-5191, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36970749

RESUMEN

Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula cis-[Ru(NO)(bpy)2(L)]n+, where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations. Interestingly, assays using selective probes evidenced that both complexes can release HNO on reaction with thiols. This finding was biologically validated by HIF-1α detection. The latter protein is related to angiogenesis and inflammation processes under hypoxic conditions, which is selectively destabilized by nitroxyl. These metal complexes also presented vasodilating properties using isolated rat aorta rings and demonstrated antioxidant properties in free radical scavenging experiments. Based on these results, the new nitrosyl ruthenium compounds showed promising characteristics as potential therapeutic agents for the treatment of cardiovascular conditions such as atherosclerosis, deserving further investigation.


Asunto(s)
Complejos de Coordinación , Rutenio , Animales , Ratas , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Rutenio/química , Compuestos de Sulfhidrilo/química , Enfermedades Cardiovasculares
3.
Acta Trop ; 192: 61-65, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30689977

RESUMEN

Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. There are many complications presented by the current treatment, as high toxicity, high cost and parasite resistance, making the development of new therapeutic agents indispensable. The present study aims to evaluate the leishmanicidal potential of ruthenium nitrosyl complex cis-[Ru(bpy)2(SO3)(NO)](PF6) against Leishmania (Viannia) braziliensis. The effect of this metal complex on parasite-host interaction was evaluated by in vitro efficacy test in dermal fibrobast cells in the presence of different concentrations (1, 10, 50 and 100 µM) and by in vivo efficacy tests performed in the presence of two different concentrations of complex (100 µg/kg/day or 300 µg/kg/day) evaluating its effect on the size of the lesion and the number of parasites present in the draining lymph nodes in hamsters. Even at the lowest concentration of 1 µM of ruthenium complex, it was observed a significant decrease of the infected cells, after 24 h exposure in vitro, with total reduction at 50 µM of the ruthenium complex. In the in vivo cutaneous infection model, administration of daily doses of 300 µg/kg/day of complex reduced significantly lesion size by 51% (p < 0.05), with a 99.9% elimination of the parasites found in the lymph nodes (p < 0.001). The results suggest a promising leishmanicidal effect by that ruthenium nitrosyl complex against L. (V.) braziliensis.


Asunto(s)
Leishmania braziliensis/efectos de los fármacos , Compuestos de Rutenio/farmacología , Animales , Cricetinae , Relación Dosis-Respuesta a Droga , Interacciones Huésped-Parásitos , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA