Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 213: 470-487, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301978

RESUMEN

The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , Reparación del ADN/genética , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Estrés Oxidativo/genética , Daño del ADN/genética , Apoptosis/genética
2.
Sci Rep ; 13(1): 11714, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474666

RESUMEN

The year of 2020 was profoundly marked by a global pandemic caused by a strain of coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19). To control disease spread, a key strategy adopted by many countries was the regular testing of individuals for infection. This led to the rapid development of diagnostic testing technologies. In Norway, within a week, our group developed a test kit to quickly isolate viral RNA and safely detect SARS-CoV-2 infection with sensitivity comparable to available kits. Herein, the procedure employed for the detection of SARS-CoV-2 in swab samples from patients using the NTNU-COVID-19 test kit is described in detail. This procedure, based on NAxtra magnetic nanoparticles and an optimized nucleic acid extraction procedure, is robust, reliable, and straightforward, providing high-quality nucleic acids within 14 min. The NAxtra protocol is adaptable and was further validated for extraction of DNA and RNA from other types of viruses. A comparison of the protocol on different liquid handling systems is also presented. Due to the simplicity and low cost of this method, implementation of this technology to diagnose virus infections on a clinical setting would benefit health care systems, promoting sustainability.


Asunto(s)
COVID-19 , Nanopartículas de Magnetita , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , ARN Viral/genética , Sensibilidad y Especificidad
3.
PLoS One ; 10(3): e0119857, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25769101

RESUMEN

Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.


Asunto(s)
Resistencia a Antineoplásicos/genética , Melfalán/farmacología , Redes y Vías Metabólicas/genética , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Estrés Oxidativo/genética , Transducción de Señal/genética , Antineoplásicos Alquilantes/farmacología , Línea Celular Tumoral , Humanos , Interleucina-8/genética , Redes y Vías Metabólicas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/genética , Proteómica/métodos , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...