Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(3): 848-863, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326570

RESUMEN

Engineered microbial consortia often have enhanced system performance and robustness compared with single-strain biomanufacturing production platforms. However, few tools are available for generating co-cultures of the model and key industrial host Saccharomyces cerevisiae. Here we engineer auxotrophic and overexpression yeast strains that can be used to create co-cultures through exchange of essential metabolites. Using these strains as modules, we engineered two- and three-member consortia using different cross-feeding architectures. Through a combination of ensemble modelling and experimentation, we explored how cellular (for example, metabolite production strength) and environmental (for example, initial population ratio, population density and extracellular supplementation) factors govern population dynamics in these systems. We tested the use of the toolkit in a division of labour biomanufacturing case study and show that it enables enhanced and tuneable antioxidant resveratrol production. We expect this toolkit to become a useful resource for a variety of applications in synthetic ecology and biomanufacturing.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Consorcios Microbianos/genética , Biología Sintética , Ingeniería
2.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961203

RESUMEN

Dense arrangements of binding sites within nucleotide sequences can collectively influence downstream transcription rates or initiate biomolecular interactions. For example, natural promoter regions can harbor many overlapping transcription factor binding sites that influence the rate of transcription initiation. Despite the prevalence of overlapping binding sites in nature, rapid design of nucleotide sequences with many overlapping sites remains a challenge. Here, we show that this is an NP-hard problem, coined here as the nucleotide String Packing Problem (SPP). We then introduce a computational technique that efficiently assembles sets of DNA-protein binding sites into dense, contiguous stretches of double-stranded DNA. For the efficient design of nucleotide sequences spanning hundreds of base pairs, we reduce the SPP to an Orienteering Problem with integer distances, and then leverage modern integer linear programming solvers. Our method optimally packs libraries of 20-100 binding sites into dense nucleotide arrays of 50-300 base pairs in 0.05-10 seconds. Unlike approximation algorithms or meta-heuristics, our approach finds provably optimal solutions. We demonstrate how our method can generate large sets of diverse sequences suitable for library generation, where the frequency of binding site usage across the returned sequences can be controlled by modulating the objective function. As an example, we then show how adding additional constraints, like the inclusion of sequence elements with fixed positions, allows for the design of bacterial promoters. The nucleotide string packing approach we present can accelerate the design of sequences with complex DNA-protein interactions. When used in combination with synthesis and high-throughput screening, this design strategy could help interrogate how complex binding site arrangements impact either gene expression or biomolecular mechanisms in varied cellular contexts. Author Summary: The way protein binding sites are arranged on DNA can control the regulation and transcription of downstream genes. Areas with a high concentration of binding sites can enable complex interplay between transcription factors, a feature that is exploited by natural promoters. However, designing synthetic promoters that contain dense arrangements of binding sites is a challenge. The task involves overlapping many binding sites, each typically about 10 nucleotides long, within a constrained sequence area, which becomes increasingly difficult as sequence length decreases, and binding site variety increases. We introduce an approach to design nucleotide sequences with optimally packed protein binding sites, which we call the nucleotide String Packing Problem (SPP). We show that the SPP can be solved efficiently using integer linear programming to identify the densest arrangements of binding sites for a specified sequence length. We show how adding additional constraints, like the inclusion of sequence elements with fixed positions, allows for the design of bacterial promoters. The presented approach enables the rapid design and study of nucleotide sequences with complex, dense binding site architectures.

3.
Nat Chem Biol ; 19(8): 951-961, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37248413

RESUMEN

Nutritional codependence (syntrophy) has underexplored potential to improve biotechnological processes by using cooperating cell types. So far, design of yeast syntrophic communities has required extensive genetic manipulation, as the co-inoculation of most eukaryotic microbial auxotrophs does not result in cooperative growth. Here we employ high-throughput phenotypic screening to systematically test pairwise combinations of auxotrophic Saccharomyces cerevisiae deletion mutants. Although most coculture pairs do not enter syntrophic growth, we identify 49 pairs that spontaneously form syntrophic, synergistic communities. We characterized the stability and growth dynamics of nine cocultures and demonstrated that a pair of tryptophan auxotrophs grow by exchanging a pathway intermediate rather than end products. We then introduced a malonic semialdehyde biosynthesis pathway split between different pairs of auxotrophs, which resulted in increased production. Our results report the spontaneous formation of stable syntrophy in S. cerevisiae auxotrophs and illustrate the biotechnological potential of dividing labor in a cooperating intraspecies community.


Asunto(s)
Biotecnología , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
ACS Omega ; 7(22): 18331-18338, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694509

RESUMEN

Heterologous production of limonene in microorganisms through the mevalonate (MVA) pathway has traditionally imposed metabolic burden and reduced cell fitness, where imbalanced stoichiometries among sequential enzymes result in the accumulation of toxic intermediates. Although prior studies have shown that changes to mRNA stability, RBS strength, and protein homology can be effective strategies for balancing enzyme levels in the MVA pathway, testing different variations of these parameters often requires distinct genetic constructs, which can exponentially increase assembly costs as pathways increase in size. Here, we developed a multi-input transcriptional circuit to regulate the MVA pathway, where four chemical inducers, l-arabinose (Ara), choline chloride (Cho), cuminic acid (Cuma), and isopropyl ß-d-1-thiogalactopyranoside (IPTG), each regulate one of four orthogonal promoters. We tested modular transcriptional regulation of the MVA pathway by placing this circuit in an engineered Escherichia coli "marionette" strain, which enabled systematic and independent tuning of the first three enzymes (AtoB, HMGS, and HMGR) in the MVA pathway. By systematically testing combinations of chemical inducers as inputs, we investigated relationships between the expressions of different MVA pathway submodules, finding that limonene yields are sensitive to the coordinated transcriptional regulation of HMGS and HMGR.

5.
Zootaxa ; 5094(1): 177-195, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35391456

RESUMEN

Acroneuria Pictet, 1841 (Plecoptera: Perlidae) is a genus of stoneflies which presently includes 18 summer emerging Nearctic species. Diagnosis of species relies primarily on male aedeagal setal patterns, details of the ovum chorion, and larval dorsal maculations. Several species are morphologically cryptic in one or more life stages. In 2010, an apparently rare species, A. kosztarabi Kondratieff Kirchner, 1993, was petitioned for listing under the Endangered Species Act. A status survey conducted in 20162017 produced new specimen collections from near the type locality and surrounding areas. Examination of new material and the holotype of A. kirchneri Stark Kondratieff, 2004 demonstrates that it is a junior subjective synonym of A. kosztarabi. All life stages of A. kosztarabi are redescribed using color photographs and scanning electron microscope photomicrographs. Supporting data include maximum likelihood and pairwise genetic distance analyses based on mitochondrial cytochrome c oxidase subunit I fragment data. Acroneuria kosztarabi, previously known only from the type locality, is now reported from six states in the southeastern United States ranging from central North Carolina to western Tennessee and north to northern Virginia and northern Ohio.


Asunto(s)
Insectos , Neoptera , Animales , Masculino , Mitocondrias
6.
Zookeys ; 858: 45-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312089

RESUMEN

Thirty-one species of Nearctic Perlesta Banks, 1906 (Plecoptera: Perlidae) are recognized. A new species is described from western Arkansas and eastern Oklahoma, USA, Perlestasublobata South & DeWalt, sp. nov., from the adult male, adult female, and egg. Perlestasublobata males are differentiated from other congeners by a combination of a prominent ventral caecum and a distinct dorsal extension of the lateral sclerites of the aedeagus. A preliminary molecular phylogenetic hypothesis is proposed for Perlesta based on 17 congeners and three outgroup taxa using partial mitochondrial cytochrome c oxidase subunit I sequence data. Illustrations, stereomicroscope images, and scanning electron micrographs support the description and comparison to other Perlesta.

7.
Zookeys ; (556): 43-63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26877693

RESUMEN

United States National Parks have protected natural communities for one hundred years. Indiana Dunes National Lakeshore (INDU) is a park unit along the southern boundary of Lake Michigan in Indiana, USA. An inventory of 19 sites, consisting of a seep, 12 streams, four marshes, a bog, and a fen were examined for mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) (EPT taxa). Volunteers and authors collect 35 ultraviolet light traps during summer 2013 and supplementary benthic and adult sampling added species not attracted by lights or that were only present in colder months. Seventy-eight EPT species were recovered: 12 mayflies, two stoneflies, and 64 caddisflies. The EPT richness found at INDU was a low proportion of the number of species known from Indiana: caddisflies contributed only 32.7% of known state fauna, mayflies and stoneflies contributed 8.4% and 2.3%, respectively. Site EPT richness ranged from one for a seep to 34 for an 8 m-wide stream. Richness in streams generally increased with stream size. Seven new state records and rare species are reported. The number of EPT species at INDU is slightly larger than that found at Isle Royale National Park in 2013, and the community composition and evenness between orders were different.

8.
Zookeys ; (532): 137-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26692811

RESUMEN

Extensive sampling for aquatic insects was conducted in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT) of Isle Royale National Park (ISRO), Michigan, United States of America, during summer 2013. The island was ice covered until 8,000 to 10,000 years ago and is isolated by 22-70 km distance from the mainland. Two hypotheses were examined: that ISRO EPT richness would be much reduced from the mainland, and that the species colonizing ISRO would be of smaller size than mainland, adults presumably using updrafts to bridge the distance from mainland sources. Data sets were developed for known mainland EPT species and size for those species. The first hypothesis was confirmed with the mainland species pool consisting of 417 EPT, while ISRO is known to support 73 species. Richness of EPT is directly related to the number of specimens examined. Small streams supported five EPT species, while 15-25 species were found in larger streams. Lakeshores had intermediate diversity. The second hypothesis was substantiated for stoneflies, but not for mayflies or caddisflies. Stoneflies apparently are poorer fliers than either of the other two orders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...