Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Osteoarthr Cartil Open ; 5(4): 100416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107076

RESUMEN

Objective: To develop an imaging mass cytometry method for identifying complex cell phenotypes, inter-cellular interactions, and population changes in the synovium and infrapatellar fat pad (IFP) of the mouse knee following a non-invasive compression injury. Design: Fifteen male C57BL/6 mice were fed a high-fat diet for 8 weeks prior to random assignment to sham, 0.88 â€‹mm, or 1.7 â€‹mm knee compression displacement at 24 weeks of age. 2-weeks after loading, limbs were prepared for histologic and imaging mass cytometry analysis, focusing on myeloid immune cell populations in the synovium and IFP. Results: 1.7 â€‹mm compression caused anterior cruciate ligament (ACL) rupture, development of post-traumatic osteoarthritis, and a 2- to 3-fold increase in cellularity of synovium and IFP tissues compared to sham or 0.88 â€‹mm compression. Imaging mass cytometry identified 11 myeloid cell subpopulations in synovium and 7 in IFP, of which approximately half were elevated 2 weeks after ACL injury in association with the vasculature. Notably, two monocyte/macrophage subpopulations and an MHC IIhi population were elevated 2-weeks post-injury in the synovium but not IFP. Vascular and immune cell interactions were particularly diverse in the synovium, incorporating 8 unique combinations of 5 myeloid cell populations, including a monocyte/macrophage population, an MHC IIhi population, and 3 different undefined F4/80+ myeloid populations. Conclusions: Developing an imaging mass cytometry method for the mouse enabled us to identify a diverse array of synovial and IFP vascular-associated myeloid cell subpopulations. These subpopulations were differentially elevated in synovial and IFP tissues 2-weeks post injury, providing new details on tissue-specific immune regulation.

2.
Appl Biochem Biotechnol ; 168(4): 805-23, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918723

RESUMEN

It is necessary to eliminate linoleic acid and allergenic arachins from peanuts for good health reasons. Virginia-type peanuts, harvested from plots treated with mineral salts combinations that mimic the subunit compositions of glutamate dehydrogenase (GDH) were analyzed for fatty acid and arachin compositions by HPLC and polyacrylamide gel electrophoresis, respectively. Fatty acid desaturase and arachin encoding mRNAs were analyzed by Northern hybridization using the homologous RNAs synthesized by peanut GDH as probes. There were 70-80 % sequence similarities between the GDH-synthesized RNAs and the mRNAs encoding arachins, fatty acid desaturases, glutamate synthase, and nitrate reductase, which similarities induced permutation of the metabolic pathways at the mRNA level. Modeling of mRNAs showed there were 210, 3,150, 1,260, 2,520, and 4,200 metabolic permutations in the control, NPKS-, NS-, Pi-, NH(4)Cl-, and PK-treated peanuts, respectively. The mRNA cross-talks decreased the arachin to almost zero percent in the NPKS- and PK-treated peanuts, and linoleate to ~18 % in the PK-treated peanut. The mRNA cross-talks may account for the vastly reported environmentally induced variability in the linoleate contents of peanut genotypes. These results have quantitatively unified molecular biology and metabolic pathways into one simple biotechnology for optimizing peanut quality and may encourage small-scale industry to produce arachin-free low linoleate peanuts.


Asunto(s)
Arachis/metabolismo , Ácido Linoleico/metabolismo , Modelos Biológicos , Alérgenos/metabolismo , Arachis/efectos de los fármacos , Arachis/genética , Regulación hacia Abajo/efectos de los fármacos , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Glutamato Deshidrogenasa/metabolismo , Minerales/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA