Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 3358-3374, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38381063

RESUMEN

A subset of circular RNAs (circRNAs) and linear RNAs have been proposed to 'sponge' or block microRNA activity. Additionally, certain RNAs induce microRNA destruction through the process of Target RNA-Directed MicroRNA Degradation (TDMD), but whether both linear and circular transcripts are equivalent in driving TDMD is unknown. Here, we studied whether circular/linear topology of endogenous and artificial RNA targets affects TDMD. Consistent with previous knowledge that Cdr1as (ciRS-7) circular RNA protects miR-7 from Cyrano-mediated TDMD, we demonstrate that depletion of Cdr1as reduces miR-7 abundance. In contrast, overexpression of an artificial linear version of Cdr1as drives miR-7 degradation. Using plasmids that express a circRNA with minimal co-expressed cognate linear RNA, we show differential effects on TDMD that cannot be attributed to the nucleotide sequence, as the TDMD properties of a sequence often differ when in a circular versus linear form. By analysing RNA sequencing data of a neuron differentiation system, we further detect potential effects of circRNAs on microRNA stability. Our results support the view that RNA circularity influences TDMD, either enhancing or inhibiting it on specific microRNAs.


Asunto(s)
MicroARNs , Estabilidad del ARN , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , ARN/genética , ARN/metabolismo , ARN Circular/metabolismo , Humanos , Animales , Ratones
2.
Neuron ; 111(14): 2140-2154, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37230080

RESUMEN

The brain constantly adapts to changes in the environment, a capability that underlies memory and behavior. Long-term adaptations require the remodeling of neural circuits that are mediated by activity-dependent alterations in gene expression. Over the last two decades, it has been shown that the expression of protein-coding genes is significantly regulated by a complex layer of non-coding RNA (ncRNA) interactions. The aim of this review is to summarize recent discoveries regarding the functional involvement of ncRNAs during different stages of neural circuit development, activity-dependent circuit remodeling, and circuit maladapations underlying neurological and neuropsychiatric disorders. In addition to the intensively studied microRNA (miRNA) family, we focus on more recently added ncRNA classes, such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), and discuss the complex regulatory interactions between these different RNAs. We conclude by discussing the potential relevance of ncRNAs for cell-type and -state-specific regulation in the context of memory formation, the evolution of human cognitive abilities, and the development of new diagnostic and therapeutic tools in brain disorders.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Circular
3.
Transl Psychiatry ; 12(1): 221, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650177

RESUMEN

In adult patients with obsessive-compulsive disorder (OCD), altered DNA methylation has been discerned in several candidate genes, while DNA methylation on an epigenome-wide level has been investigated in only one Chinese study so far. Here, an epigenome-wide association study (EWAS) was performed in a sample of 76 OCD patients of European ancestry (37 women, age ± SD: 33.51 ± 10.92 years) and 76 sex- and age-matched healthy controls for the first time using the Illumina MethylationEPIC BeadChip. After quality control, nine epigenome-wide significant quantitative trait methylation sites (QTMs) and 21 suggestive hits were discerned in the final sample of 68 patients and 68 controls. The top hit (cg24159721) and four other significant QTMs (cg11894324, cg01070250, cg11330075, cg15174812) map to the region of the microRNA 12136 gene (MIR12136). Two additional significant CpG sites (cg05740793, cg20450977) are located in the flanking region of the MT-RNR2 (humanin) like 8 gene (MT-RNRL8), while two further QTMs (cg16267121, cg15890734) map to the regions of the MT-RNR2 (humanin) like 3 (MT-RNRL3) and MT-RNR2 (humanin) like 2 (MT-RNRL2) genes. Provided replication of the present findings in larger samples, the identified QTMs might provide more biological insight into the pathogenesis of OCD and thereby could in the future serve as peripheral epigenetic markers of OCD risk with the potential to inform targeted preventive and therapeutic efforts.


Asunto(s)
Metilación de ADN , Trastorno Obsesivo Compulsivo , Adulto , Islas de CpG , Epigénesis Genética , Epigenoma , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Trastorno Obsesivo Compulsivo/genética
4.
Nucleic Acids Res ; 50(W1): W280-W289, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609985

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that are among the main post-transcriptional regulators of gene expression. A number of data collections and prediction tools have gathered putative or confirmed targets of these regulators. It is often useful, for discovery and validation, to harness such collections to perform target enrichment analysis in given transcriptional signatures or gene-sets in order to predict involved miRNAs. While several methods have been proposed to this end, a flexible and user-friendly interface for such analyses using various approaches and collections is lacking. enrichMiR (https://ethz-ins.org/enrichMiR/) addresses this gap by enabling users to perform a series of enrichment tests, based on several target collections, to rank miRNAs according to their likely involvement in the control of a given transcriptional signature or gene-set. enrichMiR results can furthermore be visualised through interactive and publication-ready plots. To guide the choice of the appropriate analysis method, we benchmarked various tests across a panel of experiments involving the perturbation of known miRNAs. Finally, we showcase enrichMiR functionalities in a pair of use cases.


Asunto(s)
MicroARNs , Programas Informáticos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
5.
Elife ; 112022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290180

RESUMEN

The proper development and function of neuronal circuits rely on a tightly regulated balance between excitatory and inhibitory (E/I) synaptic transmission, and disrupting this balance can cause neurodevelopmental disorders, for example, schizophrenia. MicroRNA-dependent gene regulation in pyramidal neurons is important for excitatory synaptic function and cognition, but its role in inhibitory interneurons is poorly understood. Here, we identify miR138-5p as a regulator of short-term memory and inhibitory synaptic transmission in the mouse hippocampus. Sponge-mediated miR138-5p inactivation specifically in mouse parvalbumin (PV)-expressing interneurons impairs spatial recognition memory and enhances GABAergic synaptic input onto pyramidal neurons. Cellular and behavioral phenotypes associated with miR138-5p inactivation are paralleled by an upregulation of the schizophrenia (SCZ)-associated Erbb4, which we validated as a direct miR138-5p target gene. Our findings suggest that miR138-5p is a critical regulator of PV interneuron function in mice, with implications for cognition and SCZ. More generally, they provide evidence that microRNAs orchestrate neural circuit development by fine-tuning both excitatory and inhibitory synaptic transmission.


Asunto(s)
Memoria a Corto Plazo , MicroARNs , Animales , Hipocampo/fisiología , Interneuronas/fisiología , Ratones , MicroARNs/genética , Parvalbúminas/metabolismo
6.
Bioinformatics ; 38(9): 2466-2473, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35188178

RESUMEN

MOTIVATION: microRNAs are important post-transcriptional regulators of gene expression, but the identification of functionally relevant targets is still challenging. Recent research has shown improved prediction of microRNA-mediated repression using a biochemical model combined with empirically-derived k-mer affinity predictions; however, these findings are not easily applicable. RESULTS: We translate this approach into a flexible and user-friendly bioconductor package, scanMiR, also available through a web interface. Using lightweight linear models, scanMiR efficiently scans for binding sites, estimates their affinity and predicts aggregated transcript repression. Moreover, flexible 3'-supplementary alignment enables the prediction of unconventional interactions, such as bindings potentially leading to target-directed microRNA degradation or slicing. We showcase scanMiR through a systematic scan for such unconventional sites on neuronal transcripts, including lncRNAs and circRNAs. Finally, in addition to the main bioconductor package implementing these functions, we provide a user-friendly web application enabling the scanning of sequences, the visualization of predicted bindings and the browsing of predicted target repression. AVAILABILITY AND IMPLEMENTATION: scanMiR and companion packages are implemented in R, released under the GPL-3 and accessible on Bioconductor (https://bioconductor.org/packages/release/bioc/html/scanMiR.html) as well as through a shiny web server (https://ethz-ins.org/scanMiR/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , Programas Informáticos , Sitios de Unión , Factores de Transcripción
7.
EMBO Rep ; 22(10): e52094, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34396684

RESUMEN

Synaptic scaling is a form of homeostatic plasticity which allows neurons to adjust their action potential firing rate in response to chronic alterations in neural activity. Synaptic scaling requires profound changes in gene expression, but the relative contribution of local and cell-wide mechanisms is controversial. Here we perform a comprehensive multi-omics characterization of the somatic and process compartments of primary rat hippocampal neurons during synaptic scaling. We uncover both highly compartment-specific and correlating changes in the neuronal transcriptome and proteome. Whereas downregulation of crucial regulators of neuronal excitability occurs primarily in the somatic compartment, structural components of excitatory postsynapses are mostly downregulated in processes. Local inhibition of protein synthesis in processes during scaling is confirmed for candidate synaptic proteins. Motif analysis further suggests an important role for trans-acting post-transcriptional regulators, including RNA-binding proteins and microRNAs, in the local regulation of the corresponding mRNAs. Altogether, our study indicates that, during synaptic scaling, compartmentalized gene expression changes might co-exist with neuron-wide mechanisms to allow synaptic computation and homeostasis.


Asunto(s)
Plasticidad Neuronal , Sinapsis , Animales , Expresión Génica , Regulación de la Expresión Génica , Plasticidad Neuronal/genética , Neuronas , Ratas
8.
RNA Biol ; 18(9): 1252-1264, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33030396

RESUMEN

SYNCRIP, a member of the cellular heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins, regulates various aspects of neuronal development and plasticity. Although SYNCRIP has been identified as a component of cytoplasmic RNA granules in dendrites of mammalian neurons, only little is known about the specific SYNCRIP target mRNAs that mediate its effect on neuronal morphogenesis and function. Here, we present a comprehensive characterization of the cytoplasmic SYNCRIP mRNA interactome using iCLIP in primary rat cortical neurons. We identify hundreds of bona fide SYNCRIP target mRNAs, many of which encode for proteins involved in neurogenesis, neuronal migration and neurite outgrowth. From our analysis, the stabilization of mRNAs encoding for components of the microtubule network, such as doublecortin (Dcx), emerges as a novel mechanism of SYNCRIP function in addition to the previously reported control of actin dynamics. Furthermore, we found that SYNCRIP synergizes with pro-neural miRNAs, such as miR-9. Thus, SYNCRIP appears to promote early neuronal differentiation by a two-tier mechanism involving the stabilization of pro-neural mRNAs by direct 3'UTR interaction and the repression of anti-neural mRNAs in a complex with neuronal miRISC. Together, our findings provide a rationale for future studies investigating the function of SYNCRIP in mammalian brain development and disease.


Asunto(s)
Gránulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Regiones no Traducidas 3'/genética , Animales , Gránulos de Ribonucleoproteínas Citoplasmáticas/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Hipocampo/citología , MicroARNs/genética , Neuronas/citología , Complejo Silenciador Inducido por ARN/genética , Ratas , Ratas Sprague-Dawley
9.
EMBO Rep ; 20(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30552145

RESUMEN

Aberrant synaptic function is thought to underlie social deficits in neurodevelopmental disorders such as autism and schizophrenia. Although microRNAs have been shown to regulate synapse development and plasticity, their potential involvement in the control of social behaviour in mammals remains unexplored. Here, we show that deletion of the placental mammal-specific miR379-410 cluster in mice leads to hypersocial behaviour, which is accompanied by increased excitatory synaptic transmission, and exaggerated expression of ionotropic glutamate receptor complexes in the hippocampus. Bioinformatic analyses further allowed us to identify five "hub" microRNAs whose deletion accounts largely for the upregulation of excitatory synaptic genes observed, including Cnih2, Dlgap3, Prr7 and Src. Thus, the miR379-410 cluster acts a natural brake for sociability, and interfering with specific members of this cluster could represent a therapeutic strategy for the treatment of social deficits in neurodevelopmental disorders.


Asunto(s)
Conducta Animal , Euterios/genética , MicroARNs/genética , Familia de Multigenes , Conducta Social , Animales , Sitios de Unión , Euterios/metabolismo , Potenciales Postsinápticos Excitadores , Estudios de Asociación Genética , Marcadores Genéticos , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Fenotipo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Células Piramidales/metabolismo , Interferencia de ARN , Receptores de Glutamato/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...