Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 773: 145066, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582326

RESUMEN

Biological nitrogen fixation is a key process for the maintenance of natural ecosystems productivity. In tropical forests, the contribution of asymbiotic nitrogen fixation (ANF) to the nitrogen (N) input has been underestimated, even though few studies have shown that ANF may be as important as symbiotic nitrogen fixation in such environments. The inputs and abiotic modulators of ANF in the Amazon forest are not completely understood. Here, we determined ANF rates and estimated the N inputs from ANF in the phyllosphere, litter and rhizospheric soil of nine tree species in the Amazon forest over time, including an extreme drought period induced by the El Niño-Southern Oscillation. Our data showed that ANF rates in the phyllosphere were 2.8- and 17.6-fold higher than in the litter and rhizospheric soil, respectively, and was highly dependent on tree taxon. Sampling time was the major factor modulating ANF in all forest compartments. At the driest period, ANF rates were approximately 1.8-fold and 13.1-fold higher than at periods with higher rainfall, before and after the extreme drought period, respectively. Tree species was a key modulator of ANF in the phyllosphere, as well as N and Vanadium concentrations. Carbon, molybdenum and vanadium concentrations were significant modulators of ANF in the litter. Based on ANF rates at the three sampling times, we estimated that the N input in the Amazon forest through ANF in the phyllosphere, litter and rhizospheric soil, was between 0.459 and 0.714 kg N ha-1 yr-1. Our results highlight the importance of ANF in the phyllosphere for the N input in the Amazon forest, and suggest that changes in the patterns of ANF driven by large scale climatic events may impact total N inputs and likely alter forest productivity.


Asunto(s)
Ecosistema , Fijación del Nitrógeno , Bosques , Nitrógeno , Suelo , Árboles
2.
J Magn Reson ; 311: 106666, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31846810

RESUMEN

The transverse relaxation time (T2), measured with Carr-Purcell-Meiboom-Gill (CPMG) sequence, has been widely used to obtain the direct dimension data in two-dimension time domain NMR (2D TD-NMR). In this paper we are demonstrating that Continuous Wave Free Precession sequence, with low flip angle (CWFP-T1), can be an alternative to CPMG as direct detection dimension. CWFP-T1 is a fast single shot sequence, like CPMG, and yields an exponential signal governed predominantly by the longitudinal (T1) relaxation time. To obtain the correlations between T1 and T2 (T1-T2 maps) we are proposing the use of CPMG-CWFP-T1 pulse sequence. In this sequence CPMG encodes T2 information (indirect dimension) that modulates the CWFP-T1 (direct dimension) signal amplitudes. CPMG-CWFP-T1 experiments were compared with classical 2D sequences such as Saturation-Recovery-CPMG (SR-CPMG) and Inversion-Recovery-CPMG (IR-CPMG) sequence and yields similar results in phantom sample. The experimental time for the 2D sequences, using single scan, shows that SR-CPMG ≤ CPMG-CWFP-T1 < IR-CPMG. Experimental and simulated results demonstrated that 2D-CPMG-CWFP-T1 maps have higher resolution in T1 dimension than the techniques that uses CPMG as direct dimension. CPMG-CWFP-T1 sequence was also applied to study beef samples, and 2D maps showed higher resolution in the two fat signals than the classical IR-CPMG method.


Asunto(s)
Análisis de los Alimentos/métodos , Espectroscopía de Resonancia Magnética/métodos , Tejido Adiposo/química , Algoritmos , Animales , Bovinos , Simulación por Computador , Procesamiento Automatizado de Datos , Carne/análisis , Conformación Molecular , Relación Señal-Ruido
3.
J Magn Reson ; 259: 174-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26363504

RESUMEN

T1 and T2 relaxation times have been frequently used as probes for physical-chemical properties in several time-domain NMR applications (TD-NMR) such as food, polymers and petroleum industries. T2 measurements are usually achieved using the traditional Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence because it is a fast and robust method. On the other hand, the traditional methods for determining T1, i.e., inversion and saturation recovery, are time-consuming, driving several authors to develop rapid 1D and 2D methods to obtain T1 and T2 or T1/T2 ratio. However, these methods usually require sophisticated processing and/or high signal to noise ratio (SNR). This led us to develop simple methods for rapid and simultaneous determination of T1 and T2 using Continuous Wave Free Precession (CWFP) and Carr-Purcell Continuous Wave Free Precession (CP-CWFP) pulse sequences. Nevertheless, a drawback of these sequences is that they require specific adjustment of the frequency offset or the time interval between pulses (Tp). In this paper we present an alternative form of these sequences, named CWFPx-x, CP-CWFPx-x, where a train of π/2 pulses with phases alternated by π enable performing the experiments on-resonance and independently of Tp, when Tp

4.
Anal Chem ; 79(3): 1271-4, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17263365

RESUMEN

A new method, based on continuous wave-free precession nuclear magnetic resonance, is proposed as a high-throughput technique for measuring the oil content of intact seeds. The method has the potential to analyze more than 20 000 intact seeds per hour and is shown to be applicable even to mixtures of seeds of different species with similar fatty acid composition.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Aceites de Plantas/análisis , Semillas/química , Ácidos Grasos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA