Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 17(11): e0277612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395285

RESUMEN

Mayaro virus (MAYV, Togaviridae) and Oropouche orthobunyavirus (OROV, Peribunyaviridae) are emerging enzootic arboviruses in Latin America. Outbreaks of febrile illness associated with MAYV and OROV have been reported among humans mainly in the northern region of Brazil since the 1980s, and recent data suggest these viruses have circulated also in more populated areas of western Brazil. MAYV shares mosquito vectors with yellow fever virus and it has been historically detected during yellow fever epidemics. Aiming to investigate the transmission of OROV and MAYV at the human-animal interface during a yellow fever, chikungunya and Zika outbreaks in Brazil, we conducted a retrospective molecular investigation in 810 wild and domestic animals, 106 febrile patients, and 22.931 vectors collected from 2016 to 2018 in Cuiaba and Campo Grande metropolitan regions, western Brazil. All samples tested negative for OROV and MAYV RNA by RT-qPCR. Findings presented here suggest no active circulation of MAYV and OROV in the sampled hosts. Active surveillance and retrospective investigations are instrumental approaches for the detection of cryptic and subclinical activity of enzootic arboviruses and together serve as a warning system to implement appropriate actions to prevent outbreaks.


Asunto(s)
Arbovirus , Orthobunyavirus , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Brasil/epidemiología , Estudios Retrospectivos , Orthobunyavirus/genética , Arbovirus/genética
2.
Pathogens ; 11(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215188

RESUMEN

The co-circulation of chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV) in Rio de Janeiro (RJ), Brazil, caused a challenging triple epidemic, as they share similar clinical signs and symptoms and geographical distribution. Here, we aimed to investigate the clinical and laboratorial aspects of chikungunya suspected cases assisted in RJ during the 2018 outbreak, focusing on the differential diagnosis with dengue and zika. All suspected cases were submitted to molecular and/or serological differential diagnostic approaches to arboviruses. A total of 242 cases suspected of arbovirus infection were investigated and 73.6% (178/242) were molecular and/or serologically confirmed as chikungunya. In RT-qPCR confirmed cases, cycle threshold (Ct) values ranged from 15.46 to 35.13, with acute cases presenting lower values. Chikungunya cases were mainly in females (64%) and the most frequently affected age group was adults between 46 to 59 years old (27%). Polyarthralgia affected 89% of patients, especially in hands and feet. No dengue virus (DENV) and Zika virus (ZIKV) infections were confirmed by molecular diagnosis, but 9.5% (23/242) had serological evidence of DENV exposure by the detection of specific anti-DENV IgM or NS1, and 42.7% (76/178) of chikungunya positive cases also presented recent DENV exposure reflected by a positive anti-DENV IgM or NS1 result. A significantly higher frequency of arthritis (p = 0.023) and limb edema (p < 0.001) was found on patients with CHIKV monoinfection compared to dengue patients and patients exposed to both viruses. Lastly, phylogenetic analysis showed that the chikungunya cases were caused by the ECSA genotype. Despite the triple arboviruses' epidemic in the state of RJ, most patients with fever and arthralgia investigated here were diagnosed as chikungunya cases, and the incidence of CHIKV/DENV co-detection was higher than that reported in other studies.

3.
Intervirology ; 63(1-6): 33-45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32966990

RESUMEN

BACKGROUND: Arboviruses co-circulating within a population that are transmitted by the same vector have the potential to cause coinfections. Coinfections with dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) have been occurring in Brazil, but it is not well-understood how human responses vary during mono- or coinfections and whether they play different roles in pathogenesis. METHODS: We investigated the clinical, virological, and immunological status during patients' acute infections, focusing on the CCL/CXC chemokines, proinflammatory, as well as anti-inflammatory cytokines levels quantified by ELISAs. Viral load was determined by qRT-PCR in serum samples from 116 acute DENV, ZIKV, CHIKV, DENV/ZIKV, and CHIKV/ZIKV-infected adult patients from Brazil. RESULTS: Most of the acute patients displayed fever, headache, prostration, and myalgia, regardless of the type of arbovirus infection. Zika viral load was higher in CHIKV/ZIKV coinfected patients compared with ZIKV or DENV/ZIKV infections. All infected individuals presented increased concentrations of C-X-C motif chemokine ligand 10/interferon protein-10 (CXCL10/IP-10), C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1), and tumor necrosis factor alpha (TNF-α) compared to healthy donors. Interestingly, the ZIKV group separated from CHIKV/ZIKV due to higher levels of interleukin-10 (IL-10) and lower levels of TNF-α. While DENV/ZIKV differentiated from CHIKV due to their higher levels of CCL2/MCP-1, in CHIKV- and CHIKV/ZIKV-infected patients, levels of CXC10/IP-10, CCL2/MCP-1, and migration inhibitory factor (MIF) were associated with CHIKV viral load. By contrast, in DENV/ZIKV- and CHIKV/ZIKV-infected patients, levels of CXCL10/IP-10, CCL2/MCP-1, and TNF-α showed a significant inverse correlation with ZIKV viral load. CONCLUSIONS: From all the circulating mediators measured, we detected differences of IL-10, TNF-α, and CCL2/MCP-1 between arbovirus groups. We hypothesize that CXC10/IP-10, CCL2/MCP-1, and MIF in the CHIKV-infected group could regulate the CHIKV viral load, while CXC10/IP-10, CCL2/MCP-1, and TNF-α in DENV/ZIKV, and CHIKV/ZIKV groups, could regulate ZIKV viral load.


Asunto(s)
Fiebre Chikungunya , Citocinas/sangre , Dengue , Infección por el Virus Zika , Adulto , Brasil , Quimiocinas CC/sangre , Quimiocinas CXC/sangre , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Coinfección , Dengue/inmunología , Virus del Dengue/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carga Viral , Adulto Joven , Virus Zika/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
4.
Sci Rep ; 9(1): 18596, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819129

RESUMEN

The presence of dengue virus (DENV), Zika virus (ZIKV) and Chikungunya virus (CHIKV) in Brazil, may result in a difficult diagnosis due to the signs and symptoms shared by those. Moreover, as DENV and ZIKV belong to the same family, serological assays may show a high rate of cross-reactivity. Here, we evaluated a Dengue NS1 capture assay for early and differential diagnosis of dengue during the Zika epidemic occurred in Brazil in 2016. Samples (n = 227) from 218 patients included sera, plasma and urine from previously confirmed acute cases of Zika, dengue and Zika/dengue co-infections. Nine of those patients presented two specimens. The Dengue NS1 test was very specific for dengue diagnosis (99.32%), even in the co-circulation with ZIKV, and exhibited a high accuracy in not detecting acute Zika infections (92.43%). Our findings showed that the dengue NS1 capture test analyzed here was not able to recognize the ZIKV NS1 and its potential for cross-reaction.


Asunto(s)
Reacciones Cruzadas , Dengue/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas no Estructurales Virales/análisis , Infección por el Virus Zika/diagnóstico , Anticuerpos Antivirales/inmunología , Brasil/epidemiología , Estudios Transversales , Dengue/inmunología , Virus del Dengue , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Serotipificación , Proteínas no Estructurales Virales/inmunología , Virus Zika , Infección por el Virus Zika/inmunología
5.
Viruses ; 10(11)2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30424530

RESUMEN

Currently, Brazil lives a triple arboviruses epidemic (DENV, ZIKV and CHIKV) making the differential diagnosis difficult for health professionals. Here, we aimed to investigate chikungunya cases and the possible occurrence of co-infections during the epidemic in Amapá (AP) that started in 2014 when the first autochthonous cases were reported and in Rio de Janeiro (RJ) in 2016. We further performed molecular characterization and genotyping of representative strains. In AP, 51.4% of the suspected cases were confirmed for CHIKV, 71.0% (76/107). Of those, 24 co-infections by CHIKV/DENV, two by CHIKV/DENV-1, and two by CHIKV/DENV-4 were observed. In RJ, 76.9% of the suspected cases were confirmed for CHIKV and co-infections by CHIKV/DENV (n = 8) and by CHIKV/ZIKV (n = 17) were observed. Overall, fever, arthralgia, myalgia, prostration, edema, exanthema, conjunctival hyperemia, lower back pain, dizziness, nausea, retroorbital pain, and anorexia were the predominating chikungunya clinical symptoms described. All strains analyzed from AP belonged to the Asian genotype and no amino acid changes were observed. In RJ, the East-Central-South-African genotype (ECSA) circulation was demonstrated and no E1-A226V mutation was observed. Despite this, an E1-V156A substitution was characterized in two samples and for the first time, the E1-K211T mutation was reported in all samples analyzed.


Asunto(s)
Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Virus Chikungunya , Brasil/epidemiología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Coinfección , Dengue/epidemiología , Dengue/virología , Virus del Dengue/genética , Brotes de Enfermedades , Genoma Viral , Genotipo , Humanos , Filogenia , Vigilancia de la Población , Virus Zika , Infección por el Virus Zika/epidemiología
6.
Sci Rep ; 8(1): 17160, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464188

RESUMEN

In Brazil, DENV-1 introduced in the 80's, remained the prevalent serotype from 2012 to 2016. After its re-emergence in the country in 2009, the co-circulation of different viral lineages was identified, however, its transmission dynamics afterwards, was not fully characterized. In this study, we performed the continuous molecular surveillance after the reemergence period (2012 to 2016), covering the 30 years of circulation of DENV-1 in Brazil. Phylogenetic analysis allowed confirmation of the continued presence of genotype V, as well as three distinct co-circulating lineages. The molecular characterization of the E gene presented two new amino acid substitutions previously unidentified in the country. Phylogeographic analysis has shown that a large flow of migrations has occurred between Brazil and Argentina in the last 10 years.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/genética , Dengue/epidemiología , Dengue/virología , Genotipo , Brasil/epidemiología , Virus del Dengue/aislamiento & purificación , Monitoreo Epidemiológico , Humanos , Epidemiología Molecular , Filogenia , Análisis de Secuencia de ADN , Serogrupo , Análisis Espacio-Temporal , Proteínas del Envoltorio Viral/genética
7.
PLoS Curr ; 102018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29588874

RESUMEN

BACKGROUND: The current triple epidemic caused by dengue, zika and chikungunya constitutes a serious health problem in Brazil. The aim of this study was to investigate acute samples (up to the 7 days of symptoms) from patients presenting acute fever syndrome suspected as arboviral infection and characterize the clinical and laboratorial profile during the co-circulation of dengue, zika and chikungunya in Campo Grande, Mato Grosso do Sul (MS), midwest region of Brazil. METHODS: All suspected cases (n=134) were tested by using serological and molecular diagnostic tests including DENV, ZIKV and CHIKV RT-PCR, Dengue nonstructural protein 1 (NS1) antigen capture ELISA, anti- DENV IgM ELISA and anti-CHIKV IgM ELISA. In addition, clinical, hematological and biochemical parameters of infected patients were analyzed. RESULTS:  It was observed that 79.1% of the blood samples were confirmed for ZIKV and/or DENV infection Of those, 38.0% patients were DENV monoinfected, 26.8% were ZIKV monoinfected and 13.4% were DENV/ZIKV co-infected. Seven patients presented Chikungunya IgM antibodies indicating a previous CHIKV infection. Common symptoms included fever, rash, arthralgia, myalgia, prostration, headache and conjunctivitis. Statistical analysis showed that pruritus and edema were associated with ZIKV infection while prostration and vomiting were more associated with dengue. Additionally, total protein and ALT levels were significantly different in DENV patients compared to ZIKV ones. Some DENV infected patients as well as co-infected needed hospitalization and venous hydration. Otherwise, most ZIKV infected patients presented mild clinical course. Among the pregnant women studied (n=11), three were ZIKV monoinfected while four were DENV monoinfected and two were DENV-1/ZIKV coinfected. In general, normal birth outcomes were observed except for the death due to respiratory insufficiency of one baby born to a mother coinfected with DENV-1/ZIKV. CONCLUSIONS:  Herein, we provide evidence of the co-circulation of DENV, ZIKV and CHIKV infections in the Campo Grande, MS, Brazil, with a high frequency of DENV-1/ZIKV coinfection. Laboratorial diagnosis poses a challenge where those arboviruses are endemic and differential diagnosis proved to imperative for cases characterization. The knowledge about disease severity during arbovirus coinfections is still scarce and there are several issues emphasizing the importance of adequate management of patients at risk areas.

8.
PLoS Curr ; 92017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28286701

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) is an arbovirus that causes an acute febrile syndrome with a severe and debilitating arthralgia. In Brazil, the Asian and East-Central South African (ECSA) genotypes are circulating in the north and northeast of the country, respectively. In 2015, the first autochthonous cases in Rio de Janeiro, Brazil were reported but until now the circulating strains have not been characterized. Therefore, we aimed here to perform the molecular characterization and phylogenetic analysis of CHIKV strains circulating in the 2016 outbreak occurred in the municipality of Rio de Janeiro. METHODS: The cases analyzed in this study were collected at a private Hospital, from April 2016 to May 2016, during the chikungunya outbreak in Rio de Janeiro, Brazil. All cases were submitted to the Real Time RT-PCR for CHIKV genome detection and to anti-CHIKV IgM ELISA. Chikungunya infection was laboratorially confirmed by at least one diagnostic method and, randomly selected positive cases (n=10), were partially sequenced (CHIKV E1 gene) and analyzed. RESULTS: The results showed that all the samples grouped in ECSA genotype branch and the molecular characterization of the fragment did not reveal the A226V mutation in the Rio de Janeiro strains analyzed, but a K211T amino acid substitution was observed for the first time in all samples and a V156A substitution in two of ten samples. CONCLUSIONS: Phylogenetic analysis and molecular characterization reveals the circulation of the ECSA genotype of CHIKV in the city of Rio de Janeiro, Brazil and two amino acids substitutions (K211T and V156A) exclusive to the CHIKV strains obtained during the 2016 epidemic, were reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...