Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Crit Care Explor ; 4(8): e0734, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35928539

RESUMEN

This study sought to identify monocyte alterations from septic patients after hospital discharge by evaluating gene expression of inflammatory mediators and monocyte polarization markers. It was hypothesized that sepsis reprograms the inflammatory state of monocytes, causing effects that persist after hospital discharge and influencing patient outcomes. DESIGN: The gene expression patterns of inflammatory receptors, M1 and M2 macrophage polarization markers, NLRP3 inflammasome components, and pro- and anti-inflammatory cytokines in monocytes were assessed. PATIENTS: Thirty-four patients from the University of São Paulo Hospital, during the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase F) after discharge, were included. Patients that died during phases A and B were grouped separately, and the remaining patients were collectively termed the survivor group. MEASUREMENTS AND MAIN RESULTS: The gene expression of toll-like receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor molecule apoptosis-associated speck-like protein containing a CARD, caspase 1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-1α, interleukin-1ß, interleukin-18, and high-mobility group box 1 protein (proinflammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 (M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C motif chemokine ligand 22, transforming growth factor-beta (TGF-ß), SR-B1, and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polarization and tissue repair markers) was upregulated in monocytes from phase A until phase E compared with the control group. CONCLUSIONS: Sepsis reprograms the inflammatory state of monocytes, probably contributing to postsepsis syndrome development and mortality.

2.
Crit Care Explor, v. 4, n. 8, e0734, ago. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4452

RESUMEN

This study sought to identify monocyte alterations from septic patients after hospital discharge by evaluating gene expression of inflammatory mediators and monocyte polarization markers. It was hypothesized that sepsis reprograms the inflammatory state of monocytes, causing effects that persist after hospital discharge and influencing patient outcomes. The gene expression patterns of inflammatory receptors, M1 and M2 macrophage polarization markers, NLRP3 inflammasome components, and pro- and anti-inflammatory cytokines in monocytes were assessed. Thirty-four patients from the University of São Paulo Hospital, during the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase F) after discharge, were included. Patients that died during phases A and B were grouped separately, and the remaining patients were collectively termed the survivor group. The gene expression of toll-like receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor molecule apoptosis-associated speck-like protein containing a CARD, caspase 1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-1α, interleukin-1β, interleukin-18, and high-mobility group box 1 protein (proinflammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 (M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C motif chemokine ligand 22, transforming growth factor-beta (TGF-β), SR-B1, and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polarization and tissue repair markers) was upregulated in monocytes from phase A until phase E compared with the control group. Sepsis reprograms the inflammatory state of monocytes, probably contributing to postsepsis syndrome development and mortality.

3.
Physiol Rep ; 9(3): e14731, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33587339

RESUMEN

We measured plasma-derived extracellular vesicle (EV) proteins and their microRNA (miRNA) cargos in normoglycemic (NG), glucose intolerant (GI), and newly diagnosed diabetes mellitus (DM) in middle-aged male participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brazil). Mass spectrometry revealed decreased IGHG-1 and increased ITIH2 protein levels in the GI group compared with that in the NG group and higher serotransferrin in EVs in the DM group than in those in the NG and GI groups. The GI group also showed increased serum ferritin levels, as evaluated by biochemical analysis, compared with those in both groups. Seventeen miRNAs were differentially expressed (DEMiRs) in the plasma EVs of the three groups. DM patients showed upregulation of miR-141-3p and downregulation of miR-324-5p and -376c-3p compared with the NG and GI groups. The DM and GI groups showed increased miR-26b-5p expression compared with that in the NG group. The DM group showed decreased miR-374b-5p levels compared with those in the GI group and higher concentrations than those in the NG group. Thus, three EV proteins and five DEMiR cargos have potential prognostic importance for diabetic complications mainly associated with the immune function and iron status of GI and DM patients.


Asunto(s)
Proteínas Sanguíneas/análisis , Diabetes Mellitus/sangre , Diabetes Mellitus/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroARNs/genética , Proteoma , Transcriptoma , Adulto , Factores de Edad , Anciano , Glucemia/análisis , Brasil/epidemiología , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología , Perfilación de la Expresión Génica , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Proteómica , Medición de Riesgo , Factores de Riesgo , Factores Sexuales
4.
Clin Sci (Lond) ; 135(2): 305-325, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33480424

RESUMEN

A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.


Asunto(s)
Antivirales/farmacología , Glutamina/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Línea Celular Tumoral , Interacciones Huésped-Patógeno , Humanos , Neoplasias/metabolismo , Neoplasias/virología , Virulencia/efectos de los fármacos , Virus/efectos de los fármacos , Virus/patogenicidad
5.
Biomed Pharmacother ; 135: 111138, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33360781

RESUMEN

In 1918, quinine was used as one of the unscientifically based treatments against the H1N1 virus during the Spanish flu pandemic. Originally, quinine was extracted from the bark of Chinchona trees by South American natives of the Amazon forest, and it has been used to treat fever since the seventeenth century. The recent COVID-19 pandemic caused by Sars-Cov-2 infection has forced researchers to search for ways to prevent and treat this disease. Based on the antiviral potential of two 4-aminoquinoline compounds derived from quinine, known as chloroquine (CQ) and hydroxychloroquine (HCQ), clinical investigations for treating COVID-19 are being conducted worldwide. However, there are some discrepancies among the clinical trial outcomes.Thus, even after one hundred years of quinine use during the Spanish flu pandemic, the antiviral properties promoted by 4-aminoquinoline compounds remain unclear. The underlying molecular mechanisms by which CQ and HCQ inhibit viral replication open up the possibility of developing novel analogs of these drugs to combat COVID-19 and other viruses.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/epidemiología , Influenza Pandémica, 1918-1919 , SARS-CoV-2/efectos de los fármacos , Aminoquinolinas/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/farmacología , Humanos , Influenza Pandémica, 1918-1919/prevención & control , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
6.
Front Immunol, v. 11, 605666, fev. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3627

RESUMEN

Sepsis is well known to cause a high patient death rate (up to 50%) during the intensive care unit (ICU) stay. In addition, sepsis survival patients also exhibit a very high death rate after hospital discharge compared to patients with any other disease. The addressed question is then: why septic patients remain ill after hospital discharge? The cellular and molecular mechanisms involved in the high rate of septic patient deaths are still unknown. We described herein the studies that investigated the percentage of septic patients that died after hospital discharge ranging from 90 days up to 5 years. We also reported the symptoms of septic patients after hospital discharge and the development of the recently called post-sepsis syndrome (PSS). The most common symptoms of the PSS are cognitive disabilities, physical functioning decline, difficulties in performing routine daily activities, and poor life quality. The PSS also associates with quite often reinfection and re-hospitalization. This condition is the cause of the high rate of death mentioned above. We reported the proportion of patients dying after hospital discharge up to 5 years of followed up and the PSS symptoms associated. The authors also discuss the possible cellular and metabolic reprogramming mechanisms related with the low survival of septic patients and the occurrence of PSS.

7.
Clin Sci (Lond), v. 135, n. 2, p. 305-325, jan. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3481

RESUMEN

A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.

8.
Cell Physiol Biochem ; 54(4): 629-647, 2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32589830

RESUMEN

Neutrophils were traditionally considered as short-lived cells with abundant secretory and protein synthetic activity. Recent studies, however, indicate neutrophils are in reality a heterogeneous population of cells. Neutrophils differentiate from pluripotent stem cells in the bone marrow, and can further mature in the blood stream and can have different phenotypes in health and disease conditions. Neutrophils undergo primary functions such as phagocytosis, production of reactive oxygen species (ROS), release of lipid mediators and inflammatory proteins (mainly cytokines), and apoptosis. Neutrophils stimulate other neutrophils and trigger a cascade of immune and inflammatory responses. The underpinning intracellular metabolisms that support these neutrophil functions are herein reported. It has been known for many decades that neutrophils utilize glucose as a primary fuel and produce lactate as an end product of glycolysis. Neutrophils metabolize glucose through glycolysis and the pentose- phosphate pathway (PPP). Mitochondrial glucose oxidation is very low. The PPP provides the reduced nicotinamide adenine dinucleotide phosphate (NADPH) for the NADPH-oxidase (NOX) complex activity to produce superoxide from oxygen. These cells also utilize glutamine and fatty acids to produce the required adenosine triphosphate (ATP) and precursors for the synthesis of molecules that trigger functional outcomes. Neutrophils obtained from rat intraperitoneal cavity and incubate for 1 hour at 37°C metabolize glutamine at higher rate than that of glucose. Glutamine delays neutrophil apoptosis and maintains optimal NOX activity for superoxide production. Under limited glucose provision, neutrophils move to fatty acid oxidation (FAO) to obtain the required energy for the cell function. FAO is mainly associated with neutrophil differentiation and maturation. Hypoxia, hormonal dysfunction, and physical exercise markedly change neutrophil metabolism. It is now become clear that neutrophil metabolism underlies the heterogeneity of neutrophil phenotypes and should be intense focus of investigation.


Asunto(s)
Glucosa/metabolismo , Glutamina/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Animales , Hipoxia de la Célula/fisiología , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Hormonas/farmacología , Humanos , Mitocondrias/metabolismo , NADP/metabolismo , Neutrófilos/citología , Neutrófilos/enzimología , Neutrófilos/inmunología , Condicionamiento Físico Animal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
9.
Front Immunol ; 11: 605666, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33658992

RESUMEN

Sepsis is well known to cause a high patient death rate (up to 50%) during the intensive care unit (ICU) stay. In addition, sepsis survival patients also exhibit a very high death rate after hospital discharge compared to patients with any other disease. The addressed question is then: why septic patients remain ill after hospital discharge? The cellular and molecular mechanisms involved in the high rate of septic patient deaths are still unknown. We described herein the studies that investigated the percentage of septic patients that died after hospital discharge ranging from 90 days up to 5 years. We also reported the symptoms of septic patients after hospital discharge and the development of the recently called post-sepsis syndrome (PSS). The most common symptoms of the PSS are cognitive disabilities, physical functioning decline, difficulties in performing routine daily activities, and poor life quality. The PSS also associates with quite often reinfection and re-hospitalization. This condition is the cause of the high rate of death mentioned above. We reported the proportion of patients dying after hospital discharge up to 5 years of followed up and the PSS symptoms associated. The authors also discuss the possible cellular and metabolic reprogramming mechanisms related with the low survival of septic patients and the occurrence of PSS.


Asunto(s)
Alta del Paciente , Sepsis/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estado Funcional , Humanos , Masculino , Salud Mental , Persona de Mediana Edad , Readmisión del Paciente , Pronóstico , Calidad de Vida , Medición de Riesgo , Factores de Riesgo , Sepsis/fisiopatología , Sepsis/psicología , Sepsis/terapia , Evaluación de Síntomas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...