Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140120

RESUMEN

Nanotechnology is playing a significant role in modern life with tremendous potential and promising results in almost every domain, especially the pharmaceutical one. The impressive performance of nanomaterials is shaping the future of science and revolutionizing the traditional concepts of industry and research. Titanate nanotubes (TNTs) are one of these novel entities that became an appropriate choice to apply in several platforms due to their remarkable properties such as preparation simplicity, high stability, good biocompatibility, affordability and low toxicity. Surface modification of these nanotubes is also promoting their superior characters and contributing more to the enhancement of their performance. In this research work, an attempt was made to functionalize the surface of titanate nanotubes with carboxylic groups to increase their surface reactivity and widen the possibility of bonding different molecules that could not be bonded directly. Three carboxylic acids were investigated (trichloroacetic acid, citric acid and acrylic acid), and the prepared composites were examined using FT-IR and Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The toxicity of these functionalized TNTs was also investigated using adherent cancer cell lines and fibroblasts to determine their safety profile and to draw the basic lines for their intended future application. Based on the experimental results, acrylic acid could be the suitable choice for permanent surface modification with multiple carboxylic groups due to its possibility to be polymerized, thus presenting the opportunity to link additional molecules of interest such as polyethylene glycol (PEG) and/or other molecules at the same time.

2.
Pharmaceutics ; 15(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37896135

RESUMEN

Mucoadhesive buccal films have found increased popularity in pharmaceutical drug delivery due to the several advantages that they possess. The present study strives to develop and optimize chitosan-based mucoadhesive buccal films by relying on quality-by-design (QbD) principles. Previous knowledge and experience were employed to firstly identify the critical quality attributes (CQAs), followed by a thorough risk assessment, which led to the selection of seven critical material attributes and process parameters, namely, the polymer grade and concentration, the plasticizer type and concentration, the citric acid (CA) concentration, the amount of the casted solution, and the drying condition. Their effects on the breaking hardness and mucoadhesivity, selected as CQAs, were investigated in three steps by three designs of the experiment (DoE). The medium molecular weight of chitosan (CH) was the preferred choice in the optimized formulation, and its concentration was the most important factor affecting the CQAs, thickness, and moisture content of the films. It was found that 0.364 g/cm2 was the suitable amount of the casting solution, and its optimum drying conditions were presented in the form of a design space. Glycerol (Gly) was the best choice as a plasticizer, and a design space representing several combinations of CH and CA concentrations that produce films with the required quality was constructed at a fixed concentration of 35% Gly. A formula from this design space was selected and employed to load with two model drugs to test its drug-carrying properties for drugs with different physicochemical characteristics. Uniform drug distribution with an immediate release profile was achieved in both drugs, although one of the CQAs was outside of the specifications in the case of lidocaine-containing film. To summarize, the obtention of the optimum mucoadhesive buccal film based on CH was efficiently facilitated by the rational application of QbD principles and the DoE approach.

3.
Pharmaceutics ; 15(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36986855

RESUMEN

For many years, researchers have been making efforts to find a manufacturing technique, as well as a drug delivery system, that will allow for oral delivery of biopharmaceuticals to their target site of action without impairing their biological activity. Due to the positive in vivo outcomes of this formulation strategy, self-emulsifying drug delivery systems (SEDDSs) have been intensively studied in the last few years as a way of overcoming the different challenges associated with the oral delivery of macromolecules. The purpose of the present study was to examine the possibility of developing solid SEDDSs as potential carriers for the oral delivery of lysozyme (LYS) using the Quality by Design (QbD) concept. LYS was successfully ion paired with anionic surfactant, sodium dodecyl sulphate (SDS), and this complex was incorporated into a previously developed and optimized liquid SEDDS formulation comprising medium-chain triglycerides, polysorbate 80, and PEG 400. The final formulation of a liquid SEDDS carrying the LYS:SDS complex showed satisfactory in vitro characteristics as well as self-emulsifying properties (droplet size: 13.02 nm, PDI: 0.245, and zeta potential: -4.85 mV). The obtained nanoemulsions were robust to dilution in the different media and highly stable after 7 days, with a minor increase in droplet size (13.84 nm) and constant negative zeta potential (-0.49 mV). An optimized liquid SEDDS loaded with the LYS:SDS complex was further solidified into powders by adsorption onto a chosen solid carrier, followed by direct compression into self-emulsifying tablets. Solid SEDDS formulations also exhibited acceptable in vitro characteristics, while LYS preserved its therapeutic activity in all phases of the development process. On the basis of the results gathered, loading the hydrophobic ion pairs of therapeutic proteins and peptides to solid SEDDS may serve as a potential method for delivering biopharmaceuticals orally.

4.
Heliyon ; 8(8): e10364, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36090229

RESUMEN

Buccal drug administration is a less explored area, therefore researchers and companies focus on its research because of its innovative potential and opportunities. Buccal polymer films (patches) are considered to be an innovative form and have a great number of advantageous properties. Firstly, patients who suffer from swallowing problems and children can also apply them. The active pharmaceutical ingredient enters the systemic circulation directly without degradation and transformation. The aim of this study was to formulate buccal films with sodium alginate (SA) because it is a rarely used, innovative polymer for the formulation of buccal films. The mechanical, chemical properties and dosage forms of the prepared films were investigated with different methods. To formulate the films, cetirizine dihydrochloride (CTZ) was used as model drug, and glycerol (GLY) was added to make the films more elastic. The samples were prepared and stored at room temperature. As a result, it can be seen that the mechanical properties of all film compositions show good results, especially breaking hardness. The films with high SA concentration containing CTZ had appropriate mucoadhesion forces, so these samples are suitable for application on the buccal mucosa. The results of dissolution confirmed this finding. Finally, it can be said we formulated fast dissolving films and it can be concluded that the films prepared with 3% SA concentration containing 1% and 3% GLY can be recommended for buccal application.

5.
Pharmaceutics ; 14(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35213961

RESUMEN

There is a growing interest in implantable drug delivery systems (DDS) in pharmaceutical science. The aim of the present study is to investigate whether it is possible to customize drug release from implantable DDSs through drug-carrier interactions. Therefore, a series of chemically similar active ingredients (APIs) was mixed with different matrix-forming materials and was then compressed directly. Compression and dissolution interactions were examined by FT-IR spectroscopy. Regarding the effect of the interactions on drug release kinetics, a custom-made dissolution device designed for implantable systems was used. The data obtained were used to construct models based on artificial neural networks (ANNs) to predict drug dissolution. FT-IR studies confirmed the presence of H-bond-based solid-state interactions that intensified during dissolution. These results confirmed our hypothesis that interactions could significantly affect both the release rate and the amount of the released drug. The efficiencies of the kinetic parameter-based and point-to-point ANN models were also compared, where the results showed that the point-to-point models better handled predictive inaccuracies and provided better overall predictive efficiency.

6.
Pharmaceutics ; 14(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35214077

RESUMEN

Nowadays, the buccal administration of mucoadhesive films is very promising. Our aim was to prepare ascorbic acid-containing chitosan films to study the properties and structures important for applicability and optimize the composition. During the formulation of mucoadhesive films, chitosan as the polymer basis of the film was used. Ascorbic acid, which provided the acidic pH, was used in different concentrations (2-5%). The films were formulated by the solvent casting method. The properties of films important for applicability were investigated, such as physical parameters, mucoadhesive force, surface free energy, and breaking strength. The fine structure of the films was analyzed by atomic force microscopy, and the free volume was analyzed by PALS, which can be important for drug release kinetics and the location of the drug in the film. The applicability of the optimized composition was also tested with two different types of active ingredients. The structure of the films was also analyzed by XRPD and FTIR. Ascorbic acid can be used well in chitosan films, where it can function as a permeation enhancer when reacting to chitosan, it is biodegradable, and can be applied in 2% of our studies.

7.
Int J Pharm ; 605: 120793, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34119582

RESUMEN

Counterfeiting of the products for healing is as old as trading, and it is difficult to quantify the magnitude of the problem. It is known that substandard and/or falsified (SF) medicines are a growing global threat to health, and they cause serious social and economic damage. The EU has a strong legal framework for medicines, it is mandatory to meet the requirements of Directive 2011/62/EU. Serialisation prevents SF medicinal products from entering the legal distribution chain. The present study is an extension of the original idea and aims to develop a laser technology-based method to mark an individual traceable code on the surface of the tablet, which technology can also be used for marking personalized medicines. The method is based on the ablation of the upper layer of a double-layer, differently coloured coating. The 2D code should be formed without harming the functional layer, and anyone with a smartphone integrated with a camera should be able to authenticate these drugs with a suitable application. The present findings confirmed that KrF excimer laser and Ti:sapphire femtosecond laser are efficient and reliable for marking. These should be promising candidates for pharmaceutical companies that would like to have additional protection against drug counterfeiters.


Asunto(s)
Medicamentos Falsificados , Rayos Láser , Comprimidos , Tecnología
8.
Ecotoxicol Environ Saf ; 208: 111666, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396176

RESUMEN

The chemical ecology of rotifers has been little studied. A yet unknown property is presented within some monogonant rotifers, namely the ability to produce an exogenic filamentous biopolymer, named 'Rotimer'. This rotifer-specific viscoelastic fiber was observed in six different freshwater monogonants (Euchlanis dilatata, Lecane bulla, Lepadella patella, Itura aurita, Colurella adriatica and Trichocerca iernis) in exception of four species. Induction of Rotimer secretion can only be achieved by mechanically irritating rotifer ciliate with administering different types (yeast cell skeleton, denatured BSA, epoxy, Carmine or urea crystals and micro-cellulose) and sizes (approx. from 2.5 to 50 µm diameter) of inert particles, as inductors or visualization by adhering particles. The thickness of this Rotimer is 33 ± 3 nm, detected by scanning electron microscope. This material has two structural formations (fiber or gluelike) in nano dimension. The existence of the novel adherent natural product becomes visible by forming a 'Rotimer-Inductor Conglomerate' (RIC) web structure within a few minutes. The RIC-producing capacity of animals, depends on viability, is significantly modified according to physiological- (depletion), drug- (toxin or stimulator) and environmental (temperature, salt content and pH) effects. The E. dilatata-produced RIC is affected by protein disruptors but is resistant to several chemical influences and its Rotimer component has an overwhelming cell (algae, yeast and human neuroblastoma) motility inhibitory effect, associated with low toxicity. This biopolymer-secretion-capacity is protective of rotifers against human-type beta-amyloid aggregates.


Asunto(s)
Biopolímeros/metabolismo , Rotíferos/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Biopolímeros/química , Biopolímeros/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Agua Dulce/microbiología , Humanos , Rotíferos/clasificación , Rotíferos/efectos de los fármacos , Temperatura
9.
Eur J Pharm Sci ; 146: 105270, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32084583

RESUMEN

The oral delivery of biopharmaceuticals requires the including of absorption enhancer, protease inhibitor and a suitable carrier system. The aim of the present work was to formulate and characterize chitosan solutions/films incorporating citric acid (CA) as potential excipient in comparison to the well-known acetic acid (AA)-based films as a reference. Films were made by the solvent casting method with/without glycerol (G), propylene glycol (PG) and polyethylene glycol (PEG-400) as plasticizers. The minimum film forming temperature (MFFT) of the prepared solutions, film thickness, hardness/deformation, mucoadhesivity, moisture content, FT-IR spectra and surface free energy (SFE) were investigated. Chitosan has been reported as a safe and effective paracellular absorption enhancer for hydrophilic macromolecules, therefore there would be more rationale for incorporating CA as a solubility enhancer, a permeation enhancer and an enzyme inhibitor. CA shows good cross-linking, an ideal plasticizing property and increases both tensile strength and mucoadhesivity, thus its incorporation simplifies the formulation while improving effectiveness. We concluded that CA (3.5, 4 and 5 w/v %)-based chitosan solution could be used as a novel coating/subcoating polymer for oral macromolecule delivery, or as oral mucoadhesive films.


Asunto(s)
Quitosano/química , Citratos/química , Portadores de Fármacos , Administración Oral , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
11.
Daru ; 28(1): 403-416, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31811628

RESUMEN

OBJECTIVES: The main objective of present review is to explore and evaluate the effectiveness of recently developed methods to improve the bioavailability of orally administered biopharmaceutical drugs. METHODS: A systematic search of sciencedirect, tandfonline and Google Scholar databases based on various sets of keywords was performed. All results were evaluated based on their abstracts, and irrelevant studies were neglected during further evaluation. RESULTS: At present, biopharmaceuticals are used as injectable therapies as they are not absorbed adequately from the different routes of drug administration, particularly the oral one. Their insufficient absorption is attributed to their high molecular weight, degradation by proteolytic enzymes, high hydrophilicity and rigidity of the absorptive tissues. From industrial aspect incorporation of enzyme inhibitors (EIs) and permeation enhancers (PEs) and mucoadhesive polymers into conventional dosage forms may be the easiest way of formulation of orally administered macromolecular drugs, but the effectiveness of protection and absorption enhancement here is the most questionable. Conjugation may be problematic from regulatory aspect. Encapsulation into lipid-based vesicles sufficiently protects the incorporated macromolecule and improves intestinal uptake but have considerable stability issues. In contrast, polymeric nanocarriers may provide good stability but provides lower internalization efficacy in comparison with the lipid-based carriers. CONCLUSION: It can be concluded that the combination of the advantages of mucoadhesive polymeric and lid-based carriers in hybrid lipid/polymer nanoparticles may result in improved absorption and might represent a potential means for the oral administration of therapeutic proteins in the near future. Graphical abstract Delivery systems for oral protein daministration.


Asunto(s)
Sistemas de Liberación de Medicamentos , Absorción Intestinal , Péptidos/administración & dosificación , Proteínas/administración & dosificación , Administración Oral , Animales , Disponibilidad Biológica , Composición de Medicamentos , Humanos
12.
Drug Des Devel Ther ; 13: 4007-4020, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31819372

RESUMEN

PURPOSE: The aim of this work was to study the influence of solidification of meloxicam (Mel) containing nanosuspension (nanoMel) on the physical stability and drug bioavailability of the products. The nanoMel sample had poly(vinyl alcohol) (PVA) as a protective polymer, but no surfactant as a further stabilizing agent because the final aim was to produce surfactant-free solid phase products as well. METHODS: The solidified samples produced by fluidization and lyophilization (fluidMel, lyoMel) were examined for particle size, crystallinity, and in vitro release of Mel compared to similar parameters of nanoMel. The products were subjected to an animal experiment using per oral administration to verify their bioavailability. RESULTS: Mel containing (1%) nanoMel sample was produced by wet milling process using an optimized amount of PVA (0.5%) which resulted in 130 nm as mean particle size and a significant reduction in the degree of crystallinity (13.43%) of Mel. The fluidization technique using microcrystalline cellulose (MCC) as carrier resulted in a quick conversion and no significant change in the critical product parameters. The process of lyophilization required a longer operation time, which resulted in the amorphization of the crystalline carrier (trehalose) and the recrystallization of Mel increased its particle size and crystallinity. The fluidMel and lyoMel samples had nearly five-fold higher relative bioavailability than nanoMel application by oral administration. The correlation between in vitro and in vivo studies showed that the fixed Mel nanoparticles on the surface of solid carriers (MCC, trehalose) in both the artificial gastric juice and the stomach of the animals rapidly reached saturation concentration leading to faster dissolution and rapid absorption. CONCLUSION: The solidification of the nanosuspension not only increased the stability of the Mel nanoparticles but also allowed the preparation of surfactant-free compositions with excellent bioavailability which may be an important consideration for certain groups of patients to achieve rapid analgesia.


Asunto(s)
Analgesia , Antiinflamatorios no Esteroideos/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Meloxicam/uso terapéutico , Nanopartículas/química , Dolor/tratamiento farmacológico , Administración Oral , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Disponibilidad Biológica , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/química , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Meloxicam/administración & dosificación , Meloxicam/química , Tamaño de la Partícula , Alcohol Polivinílico/química , Propiedades de Superficie , Suspensiones/química
13.
Nanomaterials (Basel) ; 9(10)2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581711

RESUMEN

Recently, there has been an increasing interest in the application of nanotubular structures for drug delivery. There are several promising results with carbon nanotubes; however, in light of some toxicity issues, the search for alternative materials has come into focus. The objective of the present study was to investigate the influence of the applied solvent on the composite formation of titanate nanotubes (TNTs) with various drugs in order to improve their pharmacokinetics, such as solubility, stability, and bioavailability. Composites were formed by the dissolution of atenolol (ATN) and hydrochlorothiazide (HCT) in ethanol, methanol, 0.01 M hydrochloric acid or in ethanol, 1M sodium hydroxide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), respectively, and then they were mixed with a suspension of TNTs under sonication for 30 min and vacuum-dried for 24 h. The structural properties of composites were characterized by SEM, TEM, FT-IR, differential scanning calorimetry (DSC), thermogravimetric (TG) analysis, and optical contact angle (OCA) measurements. Drug release was determined from the fast disintegrating tablets using a dissolution tester coupled with a UV-Vis spectrometer. The results revealed that not only the good solubility of the drug in the applied solvent, but also the high volatility of the solvent, is necessary for an optimal composite-formation process.

14.
Int J Pharm ; 570: 118665, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31499234

RESUMEN

Substandard and/or falsified medicines are a growing global threat for health and they cause serious social and economic damage. In low- and middle-income countries the failure rate of these medical products is approximately 10.5%. 50% of medicines purchased over the Internet may be fake. According to Directive 2011/62/EU as regards the prevention of falsified medicines from entering into the legal supply chain, a unique identification should be put on each box of drugs in the EU from 9th February 2019. The current project is focusing on the development of a laser technology to mark an individual traceable code on the surface of the tablet. Usually, coatings contain titanium dioxide for sufficient coverage, which makes precision laser coding more difficult. New naturally coloured films do not include those excipients. In this research, we would like to compare the physical-chemical properties of conventionally and naturally coloured coatings after the laser marking procedure by using two types of lasers. This unique identification technology can be used for marking personalized medicine with the doses tailored for each patient, too. To sum up, the present findings may contribute to efficient and reliable laser marking solutions in the unique identification procedure. Based on our measurement results, it can be stated that excimer UV lasers are promising candidates as marking instruments for the polymer film in both conventionally and naturally coloured coatings.


Asunto(s)
Colorantes/química , Medicamentos Falsificados/química , Excipientes/química , Comprimidos/química , Rayos Láser
15.
Drug Discov Today ; 24(9): 1704-1709, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31158513

RESUMEN

Conventional drug delivery systems have limitations according to their toxicity and poor solubility, bioavailability, stability, and pharmacokinetics (PK). Here, we highlight the importance of functionalized titanate nanotubes (TNTs) as targeted drug delivery systems. We discuss the differences in the physicochemical properties of TNTs and carbon nanotubes (CNTs) and focus on the use of functionalization to improve their characteristics. TNTs are promising materials for drug delivery systems because of their superb properties compared with CNTs, such as their processability, wettability, and biocompatibility. Functionalization improves nanoparticles (NPs) via their surface modification and enables them to achieve the targeted therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanotubos de Carbono/química , Nanotubos/química , Materiales Biocompatibles , Humanos , Nanopartículas
16.
Pharm Res ; 36(7): 99, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31087188

RESUMEN

PURPOSE: To design and stabilize Liraglutide loaded poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) proper for oral administration. METHODS: PLGA NPs were prepared by means of double emulsion solvent evaporation method and optimized by applying 7-factor 2-level Plackett-Burman screening design. RESULTS: Spherical shaped NPs with homogeneous distribution, 188.95 nm particle size and 51.81% encapsulation efficiency were obtained. Liraglutide was successfully entrapped in the NPs while maintaining its native amorphous nature, and its structural integrity as well. CONCLUSION: Lira-PLGA NPs with the required Critical Quality Attributes (CQAs) were successfully designed by implementing a 7-factor 8-run Plackett Burman design into the extended Quality by Design (QbD) model, to elucidate the effect of formulation and process variables on the particle size, size-distribution, encapsulation efficiency and surface charge. As the developed nanoparticles maintained the native structure of the active pharmaceutical ingredient (API), they are promising compositions for the further development for the oral delivery of Lira. Graphical Abstract.


Asunto(s)
Portadores de Fármacos/química , Hipoglucemiantes/química , Liraglutida/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Administración Oral , Liberación de Fármacos , Emulsiones , Hipoglucemiantes/administración & dosificación , Liraglutida/administración & dosificación , Tamaño de la Partícula
17.
Materials (Basel) ; 11(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567364

RESUMEN

The present work aims to reveal the pharma-industrial benefits of the use of hydrothermally synthesised titanate nanotube (TNT) carriers in the manufacturing of nano-sized active pharmaceutical ingredients (APIs). Based on this purpose, the compressibility and compactibility of various APIs (diltiazem hydrochloride, diclofenac sodium, atenolol and hydrochlorothiazide) and their 1:1 composites formed with TNTs were investigated in a comparative study, using a Lloyd 6000R uniaxial press instrumented with a force gauge and a linear variable differential transformer extensometer. The tablet compression was performed without the use of any excipients, thus providing the precise energetic characterisation of the materials' behaviour under pressure. In addition to the powder functionality test, the post-compressional properties of the tablets were also determined and evaluated. The results of the energetic analysis demonstrated that the use of TNTs as drug carriers is beneficial in every step of the tabletting process: besides providing better flowability and more favourable particle rearrangement, it highly decreases the elastic recovery of the APIs and results in ideal plastic deformation. Moreover, the post-compressional properties of the TNT⁻API composites were found to be exceptional (e.g., great tablet hardness and tensile strength), affirming the above results and proving the potential in the use of TNT carriers for drug manufacturing.

18.
AAPS PharmSciTech ; 19(7): 3165-3176, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30136176

RESUMEN

A new technology was developed to form extended release hard gelatin capsules, based on the lipid matrix formation of Gelucire 50/13 and cetostearyl alcohol. Matrices were formed in situ by filling pulverised lipids, ethylcellulose and active ingredients such as diclofenac sodium, acetaminophen and metronidazol into capsules and heating at 63°C for 11 min. Effects of heating were investigated also on the brittleness of capsule shells. Inhibition of the evaporation of water reduced capsule damage. Dissolution tests and texture analysis were performed to discover the release and mechanical profiles of the matrices. Tests were repeated after 1 month storage and results were compared. Gelucire 50/13 alone prolonged drug release but cetostearyl alcohol slowed drug liberation even further. Drug release from all compositions was found to follow first-order kinetic. Significant softening of the matrices was detected during storage in composition containing only Gelucire 50/13, ethylcellulose and diclofenac sodium. Thermal analysis and IR tests were also performed to discover physicochemical interactions between active pharmaceutical ingredients and excipients. Thermal analysis confirmed a notable interaction between diclofenac sodium and Gelucire 50/13 which could be the cause of the observed softening. In conclusion, modified release hard gelatin capsules were developed by a simple and fast monolithic lipid matrix formation method.


Asunto(s)
Cápsulas/química , Gelatina/química , Lípidos/química , Tecnología Farmacéutica , Diclofenaco/química , Composición de Medicamentos , Liberación de Fármacos , Grasas/química , Aceites/química , Solubilidad
19.
Drug Dev Ind Pharm ; 44(11): 1770-1782, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29968491

RESUMEN

CONTEXT: Knowledge of the effects of high-shear granulation process parameters and scale-up on the properties of the produced granules is essential for formulators who face challenges regarding poor flow and compaction during development of modified release tablets based on high-molecular weight hypromellose (hydroxypropylmethylcellulose (HPMC)) polymers. Almost none of the existing studies deal with realistic industrial formulation. OBJECTIVE: The aim was to investigate the effects of scale-up and critical process parameters (CPPs) of high-shear granulation on the quality attributes of the granules, particularly in terms of the flow and compaction, using a realistic industrial formulation based on HPMC K100M polymer. METHODS: The flow properties were determined using flow time, Carr index, tablet mass, and crushing strength variations. The compaction properties were quantified using the 'out-of-die' Heckel and modified Walker models, as well as the tensile strength profile and elastic recovery. High-shear granulation was performed at different scales: 4 L, 300 L, and 600 L. RESULTS AND CONCLUSION: The scale itself had larger effects on the granule properties than the CPPs, which demonstrated high robustness of formulation on the individual scale level. Nevertheless, to achieve the desired flow and compaction, the values of the CPPs need to be precisely selected to fine-tune the process conditions. The best flow was achieved at high volumes of water addition, where larger and more spherical granules were obtained. The CPPs showed negligible influence on the compaction with no practical implications, however, the volume of water addition volume was identified as having the largest effects on compaction.


Asunto(s)
Derivados de la Hipromelosa , Comprimidos , Tecnología Farmacéutica , Composición de Medicamentos , Peso Molecular , Tamaño de la Partícula , Resistencia a la Tracción
20.
Materials (Basel) ; 11(4)2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677152

RESUMEN

This research work presents the use of the Quality by Design (QbD) concept for optimization of the spherical agglomeration crystallization method in the case of the active agent, ambroxol hydrochloride (AMB HCl). AMB HCl spherical crystals were formulated by the spherical agglomeration method, which was applied as an antisolvent technique. Spherical crystals have good flowing properties, which makes the direct compression tableting method applicable. This means that the amount of additives used can be reduced and smaller tablets can be formed. For the risk assessment, LeanQbD Software was used. According to its results, four independent variables (mixing type and time, dT (temperature difference between solvent and antisolvent), and composition (solvent/antisolvent volume ratio)) and three dependent variables (mean particle size, aspect ratio, and roundness) were selected. Based on these, a 2⁻3 mixed-level factorial design was constructed, crystallization was accomplished, and the results were evaluated using Statistica for Windows 13 program. Product assay was performed and it was revealed that improvements in the mean particle size (from ~13 to ~200 µm), roundness (from ~2.4 to ~1.5), aspect ratio (from ~1.7 to ~1.4), and flow properties were observed while polymorphic transitions were avoided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...