Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 18(9): e1010811, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095012

RESUMEN

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.


Asunto(s)
COVID-19 , Sirtuinas , Antivirales , Exorribonucleasas/metabolismo , Humanos , Lisina , Metiltransferasas/metabolismo , NAD , Provirus , ARN Viral/metabolismo , SARS-CoV-2 , Sirtuinas/genética , Proteínas no Estructurales Virales/metabolismo
2.
Cell Rep ; 40(3): 111088, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35839775

RESUMEN

Inhibitors of bromodomain and extraterminal domain (BET) proteins are possible anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here we show that BET proteins should not be inactivated therapeutically because they are critical antiviral factors at the post-entry level. Depletion of BRD3 or BRD4 in cells overexpressing ACE2 exacerbates SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , Interferones , Ratones , Proteínas Nucleares , Factores de Transcripción , Proteínas Virales
3.
Nature ; 607(7918): 351-355, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584773

RESUMEN

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


Asunto(s)
COVID-19 , Protección Cruzada , SARS-CoV-2 , Vacunación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Protección Cruzada/inmunología , Citocinas , Humanos , Ratones , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos
4.
medRxiv ; 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35075459

RESUMEN

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease 1 , Omicron infection causes less severe disease, mostly upper respiratory symptoms 2,3 . The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.

5.
bioRxiv ; 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34816261

RESUMEN

Inhibitors of Bromodomain and Extra-terminal domain (BET) proteins are possible anti-SARS-CoV-2 prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here, we show that BET proteins should not be inactivated therapeutically as they are critical antiviral factors at the post-entry level. Knockouts of BRD3 or BRD4 in cells overexpressing ACE2 exacerbate SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection, and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.

6.
Elife ; 102021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34342578

RESUMEN

Many host RNA sensors are positioned in the cytosol to detect viral RNA during infection. However, most positive-strand RNA viruses replicate within a modified organelle co-opted from intracellular membranes of the endomembrane system, which shields viral products from cellular innate immune sensors. Targeting innate RNA sensors to the endomembrane system may enhance their ability to sense RNA generated by viruses that use these compartments for replication. Here, we reveal that an isoform of oligoadenylate synthetase 1, OAS1 p46, is prenylated and targeted to the endomembrane system. Membrane localization of OAS1 p46 confers enhanced access to viral replication sites and results in increased antiviral activity against a subset of RNA viruses including flaviviruses, picornaviruses, and SARS-CoV-2. Finally, our human genetic analysis shows that the OAS1 splice-site SNP responsible for production of the OAS1 p46 isoform correlates with protection from severe COVID-19. This study highlights the importance of endomembrane targeting for the antiviral specificity of OAS1 and suggests that early control of SARS-CoV-2 replication through OAS1 p46 is an important determinant of COVID-19 severity.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , COVID-19/virología , SARS-CoV-2/metabolismo , Animales , COVID-19/inmunología , Sistemas CRISPR-Cas , Línea Celular , Edición Génica , Humanos , Polimorfismo de Nucleótido Simple , SARS-CoV-2/aislamiento & purificación
7.
Cells ; 9(4)2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272626

RESUMEN

Pathogenic flaviviruses antagonize host cell Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling downstream of interferons α/ß. Here, we show that flaviviruses inhibit JAK/STAT signaling induced by a wide range of cytokines beyond interferon, including interleukins. This broad inhibition was mapped to viral nonstructural protein 5 (NS5) binding to cellular heat shock protein 90 (HSP90), resulting in reduced Janus kinase-HSP90 interaction and thus destabilization of unchaperoned JAKs (and other kinase clients) of HSP90 during infection by Zika virus, West Nile virus, and Japanese encephalitis virus. Our studies implicate viral dysregulation of HSP90 and the JAK/STAT pathway as a critical determinant of cytokine signaling control during flavivirus infection.


Asunto(s)
Flavivirus/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas no Estructurales Virales/metabolismo , Infección por el Virus Zika/virología , Animales , Línea Celular , Humanos , Transducción de Señal , Transfección , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
8.
Nat Immunol ; 20(12): 1610-1620, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740798

RESUMEN

The initial response to viral infection is anticipatory, with host antiviral restriction factors and pathogen sensors constantly surveying the cell to rapidly mount an antiviral response through the synthesis and downstream activity of interferons. After pathogen clearance, the host's ability to resolve this antiviral response and return to homeostasis is critical. Here, we found that isoforms of the RNA-binding protein ZAP functioned as both a direct antiviral restriction factor and an interferon-resolution factor. The short isoform of ZAP bound to and mediated the degradation of several host interferon messenger RNAs, and thus acted as a negative feedback regulator of the interferon response. In contrast, the long isoform of ZAP had antiviral functions and did not regulate interferon. The two isoforms contained identical RNA-targeting domains, but differences in their intracellular localization modulated specificity for host versus viral RNA, which resulted in disparate effects on viral replication during the innate immune response.


Asunto(s)
Infecciones por Alphavirus/inmunología , Interferones/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Proteínas Represoras/metabolismo , Virus Sindbis/fisiología , Infecciones por Alphavirus/genética , Retroalimentación Fisiológica , Células HEK293 , Células Hep G2 , Homeostasis , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , ARN/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Replicación Viral
9.
Am J Physiol Lung Cell Mol Physiol ; 307(6): L482-96, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015974

RESUMEN

α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b(+) dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b(+) dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol.


Asunto(s)
Antioxidantes/farmacología , Antígeno CD11b/inmunología , Antígeno CD11c/inmunología , Células Dendríticas/inmunología , Suplementos Dietéticos , Hipersensibilidad/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , alfa-Tocoferol/farmacología , Animales , Animales Recién Nacidos , Citocinas/inmunología , Células Dendríticas/patología , Femenino , Hipersensibilidad/inmunología , Hipersensibilidad/patología , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA