Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Antimicrob Agents Chemother ; 66(9): e0068822, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36066237

RESUMEN

Patients with burn injuries are at high risk for infectious complications, and infections are the most common cause of death after the first 72 h of hospitalization. Hospital-acquired infections caused by multidrug resistant (MDR) Gram-negative bacteria (GNB) in this population are concerning. Here, we evaluated carriage with MDR GNB in patients in a large tertiary-care burn intensive care unit. Twenty-nine patients in the burn unit were screened for intestinal carriage. Samples were cultured on selective media. Median time from admission to the burn unit to first sample collection was 9 days (IQR 5 - 17 days). In 21 (72%) patients, MDR GNB were recovered; the most common bacterial species isolated was Pseudomonas aeruginosa, which was found in 11/29 (38%) of patients. Two of these patients later developed bloodstream infections with P. aeruginosa. Transmission of KPC-31-producing ST22 Citrobacter freundii was detected. Samples from two patients grew genetically similar C. freundii isolates that were resistant to ceftazidime-avibactam. On analysis of whole-genome sequencing, blaKPC-31 was part of a Tn4401b transposon that was present on two different plasmids in each C. freundii isolate. Plasmid curing experiments showed that removal of both copies of blaKPC-31 was required to restore susceptibility to ceftazidime-avibactam. In summary, MDR GNB colonization is common in burn patients and patient-to-patient transmission of highly resistant GNB occurs. These results emphasize the ongoing need for infection prevention and antimicrobial stewardship efforts in this highly vulnerable population.


Asunto(s)
Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/uso terapéutico , Ceftazidima/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética , beta-Lactamasas/uso terapéutico
3.
Int J Hyg Environ Health ; 238: 113852, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627100

RESUMEN

Point-of-use (POU) water treatment is highly relevant to private well users vulnerable to chemical contamination, but uncertainty remains around the effects of activated carbon based POU devices on the microbial quality of the treated water. In this study, under-sink activated carbon block water filters were installed in 17 homes relying on private well water in North Carolina. The influent and effluent water in each home was evaluated for bacterial and viral microbial indicator organisms monthly for five months. Multiple logistic regression was used to identify water quality and water usage variables that were significant predictors of each indicator organism occurring in the filter effluent. The odds of total coliforms occurring in the effluent decreased by 84% with each 1-log10 increase in the influent HPC (p < 0.05), suggesting a protective effect by native heterotrophic bacteria, but increased by over 50 times with low cumulative water use (p < 0.05). The filters were not protective against coliphages in the influent and viral shedding may occur after periods of increased virus concentrations in the raw well water. Specific bacteria were also found to increase in the effluent, causing a shift in the bacterial community composition, although potential opportunistic pathogens were detected in both the influent and the effluent. Overall, under normal conditions of use, the filters tested in this study did not represent a significant additional risk for well users beyond the existing exposures from undisinfected well water alone.


Asunto(s)
Microbiología del Agua , Purificación del Agua , Bacterias , Carbón Orgánico , Filtración , Calidad del Agua
4.
Water Res X ; 12: 100102, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34027379

RESUMEN

Privately-owned drinking water wells serving fewer than 25 people (private wells) are prevalent and understudied across most of the US. Private wells primarily serve rural households located outside of municipal drinking water and sewerage service coverage areas. These wells are not regulated by United States Environmental Protection Agency (EPA) under the Safe Drinking Water Act, are not regularly monitored by any public agency or utility, and generally do not undergo disinfection treatment. Coliphages are a group of viruses that infect coliform bacteria and are useful viral surrogates for fecal contamination in water systems in much the same way that fecal indicator bacteria (FIB), such as E. coli and to a lesser extent total coliforms, are used to quantify fecal contamination. Coliphages are approved by the EPA for regulatory monitoring in groundwater wells in the USA, but are not routinely used for this purpose. The present study characterizes the occurrence of male-specific and somatic coliphages, along with FIB, in private wells (n = 122) across two different counties in North Carolina. While occurrences of E. coli were rare and frequency of total coliform was generally low (~20%), male-specific and somatic coliphages were detectable in 66% and 54% of samples, respectively. Concentrations of male-specific coliphages were higher than somatics at each county and on a monthly basis. Rainfall appears to be partly influencing higher coliphage concentrations in December, January and February. This research underscores the need for increased surveillance in private wells and consideration of using coliphages in order to better characterize occurrence of fecal contamination at the time of sampling, especially during rainier months.

5.
Water Res X ; 11: 100080, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33490943

RESUMEN

Capsid integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-one recent peer-reviewed studies employing capsid integrity qPCR for viruses in the last decade (2009-2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 µM; incubation on ice or at room temperature (20 - 25 °C) for 5-120 min; and dye activation using LED or high light (500-800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.

6.
Int J Hyg Environ Health ; 222(2): 155-167, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30424942

RESUMEN

In situ physico-chemical disinfection of high risk faecal waste is both effective and widely used as a sanitation management strategy for infection prevention and control. Systematic tests where the performance of alternative physico-chemical disinfection methods is systematically compared and optimized must be based on reliable protocols. These protocol are currently not adequately addressing the neutralization related issues: the neutralization of the tested disinfectant after specified conditions of concentration and contact time (CT) is necessary to prevent continued disinfection after the intended contact time; moreover such neutralization is often necessary in practice and on a large scale to prevent adverse health and ecological impacts from remaining disinfectant after the target CT is achieved. Few studies adequately assess the extent of neutralization of the chemical disinfectant and are intended to optimize on-site disinfection practices for waste matrices posing high microbial risks. Hence, there is a need for effective and reproducible neutralization protocols in chemical disinfection trials and practice. Furthermore, for most of chemical disinfectants used in healthcare settings there is no practical methodology to reliably and conveniently measure the residual disinfectant concentration after its neutralization and also determine the optimum concentration of the neutralizer. Because some neutralizing compounds can themselves be toxic to the test microorganisms, it is necessary to optimize neutralization procedures in disinfection experiments for the development of infection control practices using accepted positive control microbes. In the presented work, a stepwise bioassay-based protocol using representative faecal indicator microbes is described for optimizing chemical disinfection and subsequent disinfectant neutralization of any infectious faecal waste matrix. The example described is for the quaternary ammonium compound benzalkonium chloride and its recommended chemical neutralizer in a high strength human faecal waste matrix.


Asunto(s)
Compuestos de Benzalconio/química , Desinfectantes/química , Heces/microbiología , Bacteriófago phi 6 , Bioensayo , Desinfección/métodos , Escherichia coli/crecimiento & desarrollo , Humanos , Lecitinas/química , Polisorbatos/química , Pseudomonas syringae/virología , Eliminación de Residuos Líquidos
7.
PLoS Negl Trop Dis ; 9(6): e0003776, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110821

RESUMEN

The operation of a health care facility, such as a cholera or Ebola treatment center in an emergency setting, results in the production of pathogen-laden wastewaters that may potentially lead to onward transmission of the disease. The research presented here evaluated the design and operation of a novel treatment system, successfully used by Médecins Sans Frontières in Haiti to disinfect CTC wastewaters in situ, eliminating the need for road haulage and disposal of the waste to a poorly-managed hazardous waste facility, thereby providing an effective barrier to disease transmission through a novel but simple sanitary intervention. The physico-chemical protocols eventually successfully treated over 600 m3 of wastewater, achieving coagulation/flocculation and disinfection by exposure to high pH (Protocol A) and low pH (Protocol B) environments, using thermotolerant coliforms as a disinfection efficacy index. In Protocol A, the addition of hydrated lime resulted in wastewater disinfection and coagulation/flocculation of suspended solids. In Protocol B, disinfection was achieved by the addition of hydrochloric acid, followed by pH neutralization and coagulation/flocculation of suspended solids using aluminum sulfate. Removal rates achieved were: COD >99%; suspended solids >90%; turbidity >90% and thermotolerant coliforms >99.9%. The proposed approach is the first known successful attempt to disinfect wastewater in a disease outbreak setting without resorting to the alternative, untested, approach of 'super chlorination' which, it has been suggested, may not consistently achieve adequate disinfection. A basic analysis of costs demonstrated a significant saving in reagent costs compared with the less reliable approach of super-chlorination. The proposed approach to in situ sanitation in cholera treatment centers and other disease outbreak settings represents a timely response to a UN call for onsite disinfection of wastewaters generated in such emergencies, and the 'Coalition for Cholera Prevention and Control' recently highlighted the research as meriting serious consideration and further study. Further applications of the method to other emergency settings are being actively explored by the authors through discussion with the World Health Organization with regards to the ongoing Ebola outbreak in West Africa, and with the UK-based NGO Oxfam with regards to excreta-borne disease management in the Philippines and Myanmar, as a component of post-disaster incremental improvements to local sanitation chains.


Asunto(s)
Cólera/epidemiología , Cólera/transmisión , Brotes de Enfermedades/prevención & control , Transmisión de Enfermedad Infecciosa/prevención & control , Desinfección/métodos , Tratamiento de Urgencia/normas , Aguas Residuales/microbiología , Compuestos de Alumbre , Desinfección/economía , Terremotos/historia , Floculación , Haití/epidemiología , Historia del Siglo XXI , Humanos , Ácido Clorhídrico , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...