Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(7): 107207, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534180

RESUMEN

Molecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CB1R). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CB1R-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and ß-arrestin1 but is independent of changes in cAMP. Moreover, ß-arrestin1 translocates to the nucleus upon CB1R activation and binds both STAT3 and TC-PTP. Consistently, CB1R activation failed to suppress leptin signaling in ß-arrestin1 knockout mice in vivo, and in neural cells deficient in CB1R, ß-arrestin1 or TC-PTP. Altogether, CB1R activation engages ß-arrestin1 to coordinate the TC-PTP-mediated inhibition of the leptin-evoked neuronal STAT3 response. This mechanism may restrict the anorexigenic effects of leptin when hypothalamic endocannabinoid levels rise, as during fasting or in diet-induced obesity.

2.
Pflugers Arch ; 470(8): 1141-1148, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29876637

RESUMEN

The biological effects of physiological stimuli of adrenocortical glomerulosa cells are predominantly mediated by the Ca2+ and the cAMP signal transduction pathways. The complex interplay between these signalling systems fine-tunes aldosterone secretion. In addition to the well-known cytosolic interactions, a novel intramitochondrial Ca2+-cAMP interplay has been recently recognised. The cytosolic Ca2+ signal is rapidly transferred into the mitochondrial matrix where it activates Ca2+-sensitive dehydrogenases, thus enhancing the formation of NADPH, a cofactor of steroid synthesis. Quite a few cell types, including H295R adrenocortical cells, express the soluble adenylyl cyclase within the mitochondria and the elevation of mitochondrial [Ca2+] activates the enzyme, thus resulting in the Ca2+-dependent formation of cAMP within the mitochondrial matrix. On the other hand, mitochondrial cAMP (mt-cAMP) potentiates the transfer of cytosolic Ca2+ into the mitochondrial matrix. This cAMP-mediated positive feedback control of mitochondrial Ca2+ uptake may facilitate the rapid hormonal response to emergency situations since knockdown of soluble adenylyl cyclase attenuates aldosterone production whereas overexpression of the enzyme facilitates steroidogenesis in vitro. Moreover, the mitochondrial Ca2+-mt-cAMP-Ca2+ uptake feedback loop is not a unique feature of adrenocortical cells; a similar signalling system has been described in HeLa cells as well.


Asunto(s)
Corteza Suprarrenal/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Mitocondrias/metabolismo , Animales , Señalización del Calcio/fisiología , Humanos
3.
J Cell Sci ; 131(10)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661848

RESUMEN

We have previously demonstrated in H295R adrenocortical cells that the Ca2+-dependent production of mitochondrial cAMP (mt-cAMP) by the matrix soluble adenylyl cyclase (sAC; encoded by ADCY10) is associated with enhanced aldosterone production. Here, we examined whether mitochondrial sAC and mt-cAMP fine tune mitochondrial Ca2+ metabolism to support steroidogenesis. Reduction of mt-cAMP formation resulted in decelerated mitochondrial Ca2+ accumulation in intact cells during K+-induced Ca2+ signalling and also in permeabilized cells exposed to elevated perimitochondrial [Ca2+]. By contrast, treatment with the membrane-permeable cAMP analogue 8-Br-cAMP, inhibition of phosphodiesterase 2 and overexpression of sAC in the mitochondrial matrix all intensified Ca2+ uptake into the organelle. Identical mt-cAMP dependence of mitochondrial Ca2+ uptake was also observed in HeLa cells. Importantly, the enhancing effect of mt-cAMP on Ca2+ uptake was independent from both the mitochondrial membrane potential and Ca2+ efflux, but was reduced by Epac1 (also known as RAPGEF3) blockade both in intact and in permeabilized cells. Finally, overexpression of sAC in the mitochondrial matrix potentiated aldosterone production implying that the observed positive feedback mechanism of mt-cAMP on mitochondrial Ca2+ accumulation may have a role in the rapid initiation of steroidogenesis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Calcio/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mitocondrias/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Transporte Biológico , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/genética
4.
Adv Exp Med Biol ; 993: 257-275, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900919

RESUMEN

Mitochondria extensively modify virtually all cellular Ca2+ transport processes, and store-operated Ca2+ entry (SOCE) is no exception to this rule. The interaction between SOCE and mitochondria is complex and reciprocal, substantially altering and, ultimately, fine-tuning both capacitative Ca2+ influx and mitochondrial function. Mitochondria, owing to their considerable Ca2+ accumulation ability, extensively buffer the cytosolic Ca2+ in their vicinity. In turn, the accumulated ion is released back into the neighboring cytosol during net Ca2+ efflux. Since store depletion itself and the successive SOCE are both Ca2+-regulated phenomena, mitochondrial Ca2+ handling may have wide-ranging effects on capacitative Ca2+ influx at any given time. In addition, mitochondria may also produce or consume soluble factors known to affect store-operated channels. On the other hand, Ca2+ entering the cell during SOCE is sensed by mitochondria, and the ensuing mitochondrial Ca2+ uptake boosts mitochondrial energy metabolism and, if Ca2+ overload occurs, may even lead to apoptosis or cell death. In several cell types, mitochondria seem to be sterically excluded from the confined space that forms between the plasma membrane (PM) and endoplasmic reticulum (ER) during SOCE. This implies that high-Ca2+ microdomains comparable to those observed between the ER and mitochondria do not form here. In the following chapter, the above aspects of the many-sided SOCE-mitochondrion interplay will be discussed in greater detail.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos
5.
Cell Rep ; 18(10): 2291-2300, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28273446

RESUMEN

Mitochondrial Ca2+ uptake through the Ca2+ uniporter supports cell functions, including oxidative metabolism, while meeting tissue-specific calcium signaling patterns and energy needs. The molecular mechanisms underlying tissue-specific control of the uniporter are unknown. Here, we investigated a possible role for tissue-specific stoichiometry between the Ca2+-sensing regulators (MICUs) and pore unit (MCU) of the uniporter. Low MICU1:MCU protein ratio lowered the [Ca2+] threshold for Ca2+ uptake and activation of oxidative metabolism but decreased the cooperativity of uniporter activation in heart and skeletal muscle compared to liver. In MICU1-overexpressing cells, MICU1 was pulled down by MCU proportionally to MICU1 overexpression, suggesting that MICU1:MCU protein ratio directly reflected their association. Overexpressing MICU1 in the heart increased MICU1:MCU ratio, leading to liver-like mitochondrial Ca2+ uptake phenotype and cardiac contractile dysfunction. Thus, the proportion of MICU1-free and MICU1-associated MCU controls these tissue-specific uniporter phenotypes and downstream Ca2+ tuning of oxidative metabolism.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Especificidad de Órganos , Femenino , Humanos , Hígado/metabolismo , Músculos/metabolismo , Miocardio/metabolismo , Oxidación-Reducción
6.
Artículo en Inglés | MEDLINE | ID: mdl-26973596

RESUMEN

The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.

7.
Mol Cell Endocrinol ; 412: 196-204, 2015 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25958040

RESUMEN

Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP.


Asunto(s)
Aldosterona/metabolismo , AMP Cíclico/biosíntesis , Mitocondrias/metabolismo , Adenilil Ciclasas/metabolismo , Aldosterona/biosíntesis , Angiotensina II/fisiología , Señalización del Calcio , Línea Celular , Humanos
8.
Cell Calcium ; 57(1): 49-55, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25533789

RESUMEN

The most frequent form of hereditary blindness, autosomal dominant optic atrophy (ADOA), is caused by the mutation of the mitochondrial protein Opa1 and the ensuing degeneration of retinal ganglion cells. Previously we found that knockdown of OPA1 enhanced mitochondrial Ca(2+) uptake (Fülöp et al., 2011). Therefore we studied mitochondrial Ca(2+) metabolism in fibroblasts obtained from members of an ADOA family. Gene sequencing revealed heterozygosity for a splice site mutation (c. 984+1G>A) in intron 9 of the OPA1 gene. ADOA cells showed a higher rate of apoptosis than control cells and their mitochondria displayed increased fragmentation when forced to oxidative metabolism. The ophthalmological parameters critical fusion frequency and ganglion cell-inner plexiform layer thickness were inversely correlated to the evoked mitochondrial Ca(2+) signals. The present data indicate that enhanced mitochondrial Ca(2+) uptake is a pathogenetic factor in the progress of ADOA.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Atrofia Óptica Autosómica Dominante/patología , Adulto , Apoptosis , Bradiquinina/farmacología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Niño , Potenciales Evocados/efectos de los fármacos , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , Humanos , Intrones , Masculino , Microscopía Confocal , Atrofia Óptica Autosómica Dominante/metabolismo , Estrés Oxidativo , Linaje , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad
9.
Mol Cell Endocrinol ; 381(1-2): 70-9, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23906536

RESUMEN

We have previously described that silencing of the mitochondrial protein OPA1 enhances mitochondrial Ca(2+) signaling and aldosterone production in H295R adrenocortical cells. Since extramitochondrial OPA1 (emOPA1) was reported to facilitate cAMP-induced lipolysis, we hypothesized that emOPA1, via the enhanced hydrolysis of cholesterol esters, augments aldosterone production in H295R cells. A few OPA1 immunopositive spots were detected in ∼40% of the cells. In cell fractionation studies OPA1/COX IV (mitochondrial marker) ratio in the post-mitochondrial fractions was an order of magnitude higher than that in the mitochondrial fraction. The ratio of long to short OPA1 isoforms was lower in post-mitochondrial than in mitochondrial fractions. Knockdown of OPA1 failed to reduce db-cAMP-induced phosphorylation of hormone-sensitive lipase (HSL), Ca(2+) signaling and aldosterone secretion. In conclusion, OPA1 could be detected in the post-mitochondrial fractions, nevertheless, OPA1 did not interfere with the cAMP - PKA - HSL mediated activation of aldosterone secretion.


Asunto(s)
Corteza Suprarrenal/fisiología , GTP Fosfohidrolasas/metabolismo , Aldosterona/biosíntesis , Señalización del Calcio , Línea Celular , Línea Celular Tumoral , AMP Cíclico/fisiología , GTP Fosfohidrolasas/genética , Técnicas de Silenciamiento del Gen , Humanos , Mitocondrias/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Esterol Esterasa/metabolismo
11.
Pflugers Arch ; 464(1): 43-50, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22395411

RESUMEN

Aldosterone, secreted by adrenal glomerulosa cells, allows the adaptation of the vertebrate organism to a wide range of physiological and pathological stimuli including acute haemodynamic challenges and long-term changes in dietary sodium and potassium intake. Most of the extracellular signals are mediated by cytosolic Ca²âº signal deriving from Ca²âº release, store-operated and/or voltage-gated Ca²âº influx. Mitochondria in glomerulosa cells play a fundamental role in generating and modulating the final biological response. These organelles not only house several enzymes of aldosterone biosynthesis but also-in a Ca²âº-dependent manner-provide NADPH for the function of these enzymes. Moreover, mitochondria, constituting a high portion of cytoplasmic volume and displaying a uniquely low-threshold Ca²âº sequestering ability, shape and thus modulate the decoding of the complex cytosolic Ca²âº response. The unusual features of mitochondrial Ca²âº signalling that permit such an integrative function in adrenal glomerulosa cells are hereby described.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Células Endocrinas/metabolismo , Mitocondrias/metabolismo , Zona Glomerular/metabolismo , Aldosterona/metabolismo , Animales , Canales de Calcio/metabolismo , Citosol/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , NADP/metabolismo
12.
Cell Calcium ; 52(1): 64-72, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22364774

RESUMEN

The mineralocorticoid hormone aldosterone is synthesized in the zona glomerulosa of the adrenal cortex. Glomerulosa cells respond to the physiological stimuli, elevated extracellular [K(+)] and angiotensin II, with an intracellular Ca(2+) signal. Cytosolic Ca(2+) facilitates the transport of the steroid-precursor cholesterol to mitochondria and, after a few hours, it also induces the transcription of aldosterone synthase. Therefore, the cytosolic Ca(2+) signal is regarded as the most important short and long-term mediator of aldosterone secretion. However, cytosolic Ca(2+) is also taken up by mitochondria and, in turn, the mitochondrial Ca(2+) response activates mitochondrial dehydrogenases resulting in stimulation of respiration and increase in reduced pyridine nucleotides. Since both cholesterol side-chain cleavage and all of the hydroxylation steps of steroid synthesis require NADPH as a cofactor, the importance of cytosolic Ca(2+) - mitochondrial Ca(2+) coupling and of appropriate NADPH supply in respect to hormone production can be assumed. However, the importance of the mitochondrial factors has been neglected so far. Here, after summarizing earlier findings we provide new results obtained through modifying mitochondrial Ca(2+) uptake by knocking down p38 MAPK or OPA1 and overexpressing S100G, supporting the notion that mitochondrial Ca(2+) and reduced pyridine nucleotides are facilitating factors for both basal and stimulated steroid production.


Asunto(s)
Aldosterona/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , NADP/metabolismo , Aldosterona/biosíntesis , Angiotensina II/farmacología , Animales , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Potasio/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Zona Glomerular/citología , Zona Glomerular/efectos de los fármacos , Zona Glomerular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Mol Cell Endocrinol ; 353(1-2): 101-8, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21924321

RESUMEN

Mitochondrial Ca(2+) signal activates metabolism by boosting pyridine nucleotide reduction and ATP synthesis or, if Ca(2+) sequestration is supraphysiological, may even lead to apoptosis. Although the molecular background of mitochondrial Ca(2+) uptake has recently been elucidated, the regulation of Ca(2+) handling is still not properly clarified. In human adrenocortical H295R cells we found a regulatory mechanism involving p38 MAPK and novel-type PKC isoforms. Upon stimulation with angiotensin II (AII) these kinases are activated typically prior to the release of Ca(2+) and - most probably by reducing the Ca(2+) permeation through the outer mitochondrial membrane - attenuate mitochondrial Ca(2+) uptake in a feed-forward manner. The biologic significance of the kinase-mediated reduction of mitochondrial Ca(2+) signal is also reflected by the attenuation of AII-mediated aldosterone secretion. As another feed-forward mechanism, we found in HEK-293T and H295R cells that Ca(2+) signal evoked either by IP(3) or by voltage-gated influx is accompanied by a concomitant cytosolic Mg(2+) signal. In permeabilized HEK-293T cells Mg(2+) was found to be a potent inhibitor of mitochondrial Ca(2+) uptake in the physiologic [Mg(2+)] and [Ca(2+)] range. Thus, these inhibitory mechanisms may serve not only as protection against mitochondrial Ca(2+) overload and subsequent apoptosis but also have the potential to substantially alter physiological responses.


Asunto(s)
Aldosterona/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Línea Celular , Humanos , Fosfatos de Inositol/metabolismo , Isoenzimas/metabolismo , Magnesio/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
PLoS One ; 6(9): e25199, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980395

RESUMEN

The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca²âº uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca²âº to the transporters in the crista membrane and thus would enhance Ca²âº uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca²âº signals evoked with K⁺ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca²âº] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca²âº uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca²âº uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na⁺/Ca²âº and Ca²âº/H⁺ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca²âº metabolism.


Asunto(s)
Señalización del Calcio/fisiología , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Antiportadores/metabolismo , Calcio/metabolismo , Señalización del Calcio/genética , Línea Celular , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Immunoblotting , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología , Microscopía Confocal , ARN Interferente Pequeño , Intercambiador de Sodio-Calcio/metabolismo
15.
Cell Metab ; 13(5): 601-11, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21531342

RESUMEN

Mitochondrial Ca(2+) signals have been proposed to accelerate oxidative metabolism and ATP production to match Ca(2+)-activated energy-consuming processes. Efforts to understand the signaling role of mitochondrial Ca(2+) have been hampered by the inability to manipulate matrix Ca(2+) without directly altering cytosolic Ca(2+). We were able to selectively buffer mitochondrial Ca(2+) rises by targeting the Ca(2+)-binding protein S100G to the matrix. We find that matrix Ca(2+) controls signal-dependent NAD(P)H formation, respiration, and ATP changes in intact cells. Furthermore, we demonstrate that matrix Ca(2+) increases are necessary for the amplification of sustained glucose-dependent insulin secretion in ß cells. Through the regulation of NAD(P)H in adrenal glomerulosa cells, matrix Ca(2+) also acts as a positive signal in reductive biosynthesis, which stimulates aldosterone secretion. Our dissection of cytosolic and mitochondrial Ca(2+) signals reveals the physiological importance of matrix Ca(2+) in energy metabolism required for signal-dependent hormone secretion.


Asunto(s)
Aldosterona/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Animales , Calbindinas , Células Cultivadas , Glucosa/metabolismo , Técnicas para Inmunoenzimas , Insulina/metabolismo , Potencial de la Membrana Mitocondrial , NADP/metabolismo , Consumo de Oxígeno , Ratas , Zona Glomerular/citología , Zona Glomerular/metabolismo
16.
Cell Calcium ; 48(2-3): 168-75, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20832113

RESUMEN

Cytosolic Ca(2+) signal induces mitochondrial Ca(2+) uptake that has far-reaching effect on several cellular functions. We have previously shown in H295R cells that the transfer of cytosolic Ca(2+) signal into mitochondria is attenuated by the simultaneous activation of p38 MAPK and novel-type PKC isoforms (Szanda et al. (2008) [1], Koncz et al. (2009) [2]). In the present study we show that (i) kinase-mediated inhibition of mitochondrial Ca(2+) uptake persists after clamping or dissipation of the mitochondrial membrane potential; (ii) kinase activation increases the [Ca(2+)] required for half-maximal Ca(2+) uptake rate in permeabilized cells; (iii) inhibition of the Ca(2+) uptake by the kinases is dependent on an intact mitochondrial outer membrane; (iv) when p38 MAPK and novel-type PKC isoforms are activated, the outer mitochondrial membrane may limit Ca(2+) diffusion even in the low micromolar [Ca(2+)] range. These findings confirm the concept that the outer mitochondrial membrane impedes mitochondrial Ca(2+) uptake by reducing the availability of Ca(2+) at the transport sites (i.e. the inner mitochondrial membrane), and suggest that Ca(2+) transport through the outer membrane is controlled by the activity of p38 MAPK and novel-type PKC isoforms.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Regulación hacia Abajo/fisiología , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteína Quinasa C/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Línea Celular , Activación Enzimática/fisiología , Humanos , Isoenzimas/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Cell Calcium ; 46(2): 122-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19631981

RESUMEN

Angiotensin II elicits cytosolic Ca2+ signal that is transferred into the mitochondria. Previously we found in H295R cells that this signal transfer is enhanced by both the inhibition of p38 MAPK and a novel isoform of PKC [G. Szanda, P. Koncz, A. Rajki, A. Spät, Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake, Cell Calcium 43 (2008) 250-259]. Now we report that simultaneous activation of these protein kinases (by TNFalpha and PMA+an inhibitor of the conventional PKC isoforms, respectively) attenuates the transfer of cytosolic Ca2+ signal, elicited by depolarisation or store-operated Ca2+ influx, into the mitochondria. The Ca2+ uptake enhancing effect of the p38 MAPK inhibitor SB202190 is due to the inhibition of p38 MAPK and not to a direct mitochondrial action. Protein kinases reduce mitochondrial [Ca2+] by inhibiting the uptake mechanism. The threshold of mitochondrial Ca2+ uptake may depend on the activity of p38 MAPK. The silencing of protein kinase D (PKD) also results in enhanced transfer of Ca2+ signal from the cytosol into the mitochondria. Our data indicate that Ca2+ mobilising agonists, through the simultaneous activation of p38 MAPK, a novel PKC isoform and PKD, exert a negative feed-forward action on mitochondrial Ca2+ uptake, thus reducing the risk of Ca2+ overload.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Angiotensina II/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Línea Celular , Citosol/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Retroalimentación Fisiológica , Humanos , Imidazoles/farmacología , Inmunohistoquímica , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Proteína Quinasa C/genética , Piridinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Factor de Necrosis Tumoral alfa/metabolismo
18.
Cell Calcium ; 46(1): 49-55, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19427033

RESUMEN

Calcium depletion of the endoplasmic reticulum (ER) induces oligomerisation, puncta formation and translocation of the ER Ca(2+) sensor proteins, STIM1 and -2 into plasma membrane (PM)-adjacent regions of the ER, where they activate the Orai1, -2 or -3 proteins present in the opposing PM. These proteins form ion channels through which store-operated Ca(2+) influx (SOC) occurs. Calcium ions exert negative feed-back on SOC. Here we examined whether subplasmalemmal mitochondria, which reduce this feed-back by Ca(2+) uptake, are located within or out of the high-Ca(2+) microdomains (HCMDs) formed between the ER and plasmalemmal Orai1 channels. For this purpose, COS-7 cells were cotransfected with Orai1, STIM1 labelled with YFP or mRFP and the mitochondrially targeted Ca(2+) sensitive fluorescent protein inverse-Pericam. Depletion of ER Ca(2+) with ATP+thapsigargin (in Ca(2+)-free medium) induced the appearance of STIM1 puncta in the < or =100 nm wide subplasmalemmal space, as examined with TIRF. Mitochondria were located either in the gaps between STIM1-tagged puncta or in remote, STIM1-free regions. After addition of Ca(2+) mitochondrial Ca(2+) concentration increased irrespective of the mitochondrion-STIM1 distance. These observations indicate that mitochondria are exposed to Ca(2+) diffused laterally from the HCMDs formed between the PM and the subplasmalemmal ER.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Células COS , Canales de Calcio/metabolismo , Células Cultivadas , Chlorocebus aethiops , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo
19.
Pflugers Arch ; 457(4): 941-54, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18629534

RESUMEN

Cytosolic Ca2+ signals are followed by mitochondrial Ca2+ uptake, which, in turn, modifies several biological processes. Mg2+ is known to inhibit Ca2+ uptake by isolated mitochondria, but its significance in intact cells has not been elucidated. In HEK293T cells, activation of purinergic receptors with extracellular ATP caused cytosolic Ca2+ signals associated with parallel changes in cytosolic [Mg2+]. Neither signals were affected by omitting bivalent cations from the extracellular medium. The effect of store-operated Ca2+ influx on cytosolic Mg2+ concentration ([Mg2+]c) was negligible. Uncaged Ca2+ displaced Mg2+ from cytosolic binding sites, but for an equivalent Ca2+ signal, the change in [Mg2+] was significantly smaller than that measured after adding extracellular ATP. Inositol 1,4,5-trisphosphate mobilized Ca2+ and Mg2+ from internal stores in permeabilized cells. The increase of [Mg2+] in the range that occurred in ATP-stimulated cells inhibited mitochondrial Ca2+ uptake in permeabilized cells without affecting mitochondrial Ca2+ efflux. Therefore, the Mg2+ signal generated by Ca2+ mobilizing agonists may attenuate mitochondrial Ca2+ uptake.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Citoplasma/metabolismo , Magnesio/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Humanos , Inositol 1,4,5-Trifosfato/metabolismo
20.
Cell Calcium ; 44(1): 51-63, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18242694

RESUMEN

The Ca(2+) coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell survival and cell death mechanisms. Cytoplasmic [Ca(2+)] ([Ca(2+)](c)) spikes and oscillations produced by ER Ca(2+) release are effectively delivered to the mitochondria. Propagation of [Ca(2+)](c) signals to the mitochondria requires the passage of Ca(2+) across three membranes, namely the ER membrane, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means to promote the local transfer of Ca(2+) between the ER membrane and OMM. In this setting, even >100 microM [Ca(2+)] may be attained to activate the low affinity mitochondrial Ca(2+) uptake. However, a mitochondrial [Ca(2+)] rise has also been documented during submicromolar [Ca(2+)](c) elevations. Evidence has been emerging that Ca(2+) exerts allosteric control on the Ca(2+) transport sites at each membrane, providing mechanisms that may facilitate the Ca(2+) delivery to the mitochondria. Here we discuss the fundamental mechanisms of ER and mitochondrial Ca(2+) transport, particularly the control of their activity by Ca(2+) and evaluate both high- and low-[Ca(2+)]-activated mitochondrial calcium signals in the context of cell physiology.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Regulación Alostérica/genética , Animales , Citoesqueleto/fisiología , Retículo Endoplásmico/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Canal Liberador de Calcio Receptor de Rianodina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA