Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Cancer ; 147(2): 448-460, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31755108

RESUMEN

Genetically engineered Salmonella Typhimurium are potent vectors for prophylactic and therapeutic measures against pathogens as well as cancer. This is based on the potent adjuvanticity that supports strong immune responses. The physiology of Salmonella is well understood. It simplifies engineering of both enhanced immune-stimulatory properties as well as safety features, thus, resulting in an appropriate balance between attenuation and efficacy for clinical applications. A major virulence factor of Salmonella is the flagellum. It is also a strong pathogen-associated molecular pattern recognized by extracellular and intracellular receptors of immune cells of the host. At the same time, it represents a serious metabolic burden. Accordingly, the bacteria evolved tight regulatory mechanisms that control flagella synthesis in vivo. Here, we systematically investigated the immunogenicity and adjuvant properties of various flagella mutants of Salmonella in vitro and in a mouse cancer model in vivo. We found that mutants lacking the flagellum-specific ATPase FliHIJ or the inner membrane ring FliF displayed the greatest stimulatory capacity and strongest antitumor effects, while remaining safe in vivo. Scanning electron microscopy revealed the presence of outer membrane vesicles in the ΔfliF and ΔfliHIJ mutants. Finally, the combination of the ΔfliF and ΔfliHIJ mutations with our previously described attenuated and immunogenic background strain SF102 displayed strong efficacy against the highly resistant cancer cell line RenCa. We thus conclude that manipulating flagella biosynthesis has great potential for the construction of highly efficacious and versatile Salmonella vector strains.


Asunto(s)
Neoplasias del Colon/terapia , Flagelos/inmunología , Mutación , Salmonella typhimurium/inmunología , Administración Intravenosa , Animales , Proteínas Bacterianas/genética , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Modelos Animales de Enfermedad , Flagelos/genética , Proteínas de la Membrana/genética , Ratones , Microscopía Electrónica de Rastreo , ATPasas de Translocación de Protón/genética , Células RAW 264.7 , Salmonella typhimurium/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
2.
PLoS Biol ; 16(9): e2006989, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30188886

RESUMEN

Most bacteria swim in liquid environments by rotating one or several flagella. The long external filament of the flagellum is connected to a membrane-embedded basal body by a flexible universal joint, the hook, which allows the transmission of motor torque to the filament. The length of the hook is controlled on a nanometer scale by a sophisticated molecular ruler mechanism. However, why its length is stringently controlled has remained elusive. We engineered and studied a diverse set of hook-length variants of Salmonella enterica. Measurements of plate-assay motility, single-cell swimming speed, and directional persistence in quasi-2D and population-averaged swimming speed and body angular velocity in 3D revealed that the motility performance is optimal around the wild-type hook length. We conclude that too-short hooks may be too stiff to function as a junction and too-long hooks may buckle and create instability in the flagellar bundle. Accordingly, peritrichously flagellated bacteria move most efficiently as the distance travelled per body rotation is maximal and body wobbling is minimized. Thus, our results suggest that the molecular ruler mechanism evolved to control flagellar hook growth to the optimal length consistent with efficient bundle formation. The hook-length control mechanism is therefore a prime example of how bacteria evolved elegant but robust mechanisms to maximize their fitness under specific environmental constraints.


Asunto(s)
Flagelos/metabolismo , Salmonella enterica/metabolismo , Proteínas Bacterianas/metabolismo , Movimiento , Mutación/genética , Análisis de la Célula Individual
3.
mBio ; 9(3)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717015

RESUMEN

Flagellum-driven motility of Salmonella enterica serovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population of Salmonella, resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhD4C2 with respect to proteolytic degradation. Information concerning the environmental cues controlling expression of rflP and thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants of Salmonella Typhimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ24 (RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhD4C2 via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response.IMPORTANCE Pathogenic bacteria such as Salmonella Typhimurium sense and adapt to a multitude of changing and stressful environments during host infection. At the initial stage of gastrointestinal colonization, Salmonella uses flagellum-mediated motility to reach preferred sites of infection. However, the flagellum also constitutes a prime target for the host's immune response. Accordingly, the pathogen needs to determine the spatiotemporal stage of infection and control flagellar biosynthesis in a robust manner. We found that Salmonella uses signals from cell envelope stress-sensing systems to turn off production of flagella. We speculate that downregulation of flagellum synthesis after cell envelope damage in hostile environments aids survival of Salmonella during late stages of infection and provides a means to escape recognition by the immune system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Pared Celular/genética , Flagelos/genética , Humanos , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética
4.
Nucleic Acids Res ; 44(5): 2310-22, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26850643

RESUMEN

We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs.


Asunto(s)
Farmacorresistencia Viral Múltiple/genética , Inhibidores Enzimáticos/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Clonación Molecular , Didesoxinucleótidos/química , Didesoxinucleótidos/farmacología , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genotipo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/genética , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo , Nucleótidos de Timina/química , Nucleótidos de Timina/farmacología , Zidovudina/análogos & derivados , Zidovudina/química , Zidovudina/farmacología
5.
PLoS One ; 10(8): e0135351, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267246

RESUMEN

Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.


Asunto(s)
Flagelos/genética , Movimiento , Salmonella typhimurium/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Eliminación de Gen , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...