Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Immunol ; 14: 1206979, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876932

RESUMEN

Introduction: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes. Methods: We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1). Results: This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls. In T1, we identified differential antibody profiles associated with distinct clinical presentation. The mild group presented lower levels of anti-NP IgG, and IgA (vs moderate and severe), anti-NP IgM (vs severe, critical and fatal), anti-Spike IgA (vs severe and fatal), and anti-RBD IgG (vs severe). The moderate group presented higher levels of anti-RBD IgA, comparing with severe group. The severe group presented higher levels of anti-NP IgA (vs mild and fatal) and anti-RBD IgG (vs mild and moderate). The fatal group presented higher levels of anti-NP IgM and anti-Spike IgA (vs mild), but lower levels of anti-NP IgA (vs severe). The levels of nAb was lower just in mild group compared to severe, critical, and fatal groups, moreover, no difference was observed among the more severe groups. In addition, we studied 82 convalescent individuals, between 31 days to 6 months (T2) or more than 6 months (T3), PSO, those: 12 mild, 26 moderate, and 46 severe plus critical. The longitudinal analyzes, for the severe plus critical group showed lower levels of anti-NP IgG, IgA and IgM, anti-Spike IgA in relation T3. The follow-up in the fatal group, reveals that the levels of anti-spike IgG increased, while anti-NP IgM levels was decreased along the time in severe/critical and fatal as well as anti-NP IgG and IgA in several/critical groups. Discussion: In summary, the anti-NP IgA and IgG lower levels and the higher levels of anti-RBD and anti-Spike IgA in fatal compared to survival group of individuals admitted to the intensive care unit (ICU). Collectively, our data discriminate death from survival, suggesting that anti-RBD IgA and anti-Spike IgA may play some deleterious effect, in contrast with the potentially protective effect of anti-NP IgA and IgG in the survival group.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Nucleocápside , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina M
2.
Microbiol Spectr ; : e0219422, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852984

RESUMEN

Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.

3.
Front Immunol, v. 14, 1206979, out. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5149

RESUMEN

Introduction: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes. Methods: We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1). Results: This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls. In T1, we identified differential antibody profiles associated with distinct clinical presentation. The mild group presented lower levels of anti-NP IgG, and IgA (vs moderate and severe), anti-NP IgM (vs severe, critical and fatal), anti-Spike IgA (vs severe and fatal), and anti-RBD IgG (vs severe). The moderate group presented higher levels of anti-RBD IgA, comparing with severe group. The severe group presented higher levels of anti-NP IgA (vs mild and fatal) and anti-RBD IgG (vs mild and moderate). The fatal group presented higher levels of anti-NP IgM and anti-Spike IgA (vs mild), but lower levels of anti-NP IgA (vs severe). The levels of nAb was lower just in mild group compared to severe, critical, and fatal groups, moreover, no difference was observed among the more severe groups. In addition, we studied 82 convalescent individuals, between 31 days to 6 months (T2) or more than 6 months (T3), PSO, those: 12 mild, 26 moderate, and 46 severe plus critical. The longitudinal analyzes, for the severe plus critical group showed lower levels of anti-NP IgG, IgA and IgM, anti-Spike IgA in relation T3. The follow-up in the fatal group, reveals that the levels of anti-spike IgG increased, while anti-NP IgM levels was decreased along the time in severe/critical and fatal as well as anti-NP IgG and IgA in several/critical groups. Discussion: In summary, the anti-NP IgA and IgG lower levels and the higher levels of anti-RBD and anti-Spike IgA in fatal compared to survival group of individuals admitted to the intensive care unit (ICU). Collectively, our data discriminate death from survival, suggesting that anti-RBD IgA and anti-Spike IgA may play some deleterious effect, in contrast with the potentially protective effect of anti-NP IgA and IgG in the survival group.

4.
Microbiol Spectr, v. 11, n. 2, e02194-22, fev. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4806

RESUMEN

Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.

5.
Front Immunol, v. 12, 779473, fev. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4150

RESUMEN

Bothrops jararaca venom (BjV) can induce mast cell degranulation. In order to investigate the role of mast cells and the interference of the host genetic background in the inflammation induced by BjV, we have used mouse strains selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory response (AIR). Mice were pretreated with an inhibitor of mast cell degranulation, cromolyn (CROM), and injected in footpads or intraperitoneally (i.p.) with BjV. Pain was measured with von Frey hairs, cell migration in the peritoneum by flow cytometry, and reactive oxygen species (ROS) production by chemiluminescence assays. The nociceptive response to BjV was higher in AIRmax than AIRmin mice; however, this difference was abolished by pretreatment with CROM. BjV induced peritoneal neutrophil (CD11b+ GR-1+) infiltration and ROS secretion in AIRmax mice only, which were partially inhibited by CROM. Our findings evidence a role for mast cells in pain, neutrophil migration, and ROS production triggered by BjV in AIRmax mice that are more susceptible to the action of BjV.

6.
Front Immunol ; 12: 779473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185861

RESUMEN

Bothrops jararaca venom (BjV) can induce mast cell degranulation. In order to investigate the role of mast cells and the interference of the host genetic background in the inflammation induced by BjV, we have used mouse strains selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory response (AIR). Mice were pretreated with an inhibitor of mast cell degranulation, cromolyn (CROM), and injected in footpads or intraperitoneally (i.p.) with BjV. Pain was measured with von Frey hairs, cell migration in the peritoneum by flow cytometry, and reactive oxygen species (ROS) production by chemiluminescence assays. The nociceptive response to BjV was higher in AIRmax than AIRmin mice; however, this difference was abolished by pretreatment with CROM. BjV induced peritoneal neutrophil (CD11b+ GR-1+) infiltration and ROS secretion in AIRmax mice only, which were partially inhibited by CROM. Our findings evidence a role for mast cells in pain, neutrophil migration, and ROS production triggered by BjV in AIRmax mice that are more susceptible to the action of BjV.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Movimiento Celular , Venenos de Crotálidos/efectos adversos , Inflamación/inducido químicamente , Mastocitos , Ratones , Dolor , Especies Reactivas de Oxígeno
7.
J Immunol Res ; 2019: 2641098, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30937315

RESUMEN

The inflammatory and autoimmune events preceding clinical symptoms in rheumatoid arthritis (RA) and other autoimmune diseases are difficult to study in human patients. Therefore, animal models that share immunologic and clinical features with human RA, such as pristane-induced arthritis (PIA), are valuable tools for assessing the primordial events related to arthritis susceptibility. PIA-resistant HIII and susceptible LIII mice were injected i.p. with pristane, and peritoneal lavage fluid was harvested in the early (7 days) and late (35 days) preclinical phases of PIA. Chemokine and cytokine levels were measured in lavage supernatant with ELISA, peritoneal inflammatory leukocytes were immunophenotyped by flow cytometry, and gene expression was determined by qRT-PCR. Leukocyte recruitment was quantitatively and qualitatively divergent in the peritoneum of HIII and LIII mice, with an early increase of CC chemokines (CCL2/CCL3/CCL5/CCL12/CCL22) in the susceptible LIII strain. Also, cytokines such as IL-12p40, IL-23, and IL-18 were elevated in LIII mice while IL-6 was increased in HIII animals. The results show that an early peritoneal CC chemokine response is an important feature of arthritis susceptibility and defines potential biomarkers in this model.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Quimiocinas CC/inmunología , Inflamación , Peritoneo/inmunología , Animales , Artritis Experimental/inducido químicamente , Biomarcadores , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Interleucina-6/inmunología , Masculino , Ratones , Fenotipo , Terpenos/administración & dosificación
8.
Biomed Res Int, v. 2019, 2641098, 2019
Artículo en Portugués, Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2701

RESUMEN

The inflammatory and autoimmune events preceding clinical symptoms in rheumatoid arthritis (RA) and other autoimmune diseases are difficult to study in human patients. Therefore, animal models that share immunologic and clinical features with human RA, such as pristane-induced arthritis (PIA), are valuable tools for assessing the primordial events related to arthritis susceptibility. PIA-resistant HIII and susceptible LIII mice were injected i.p. with pristane, and peritoneal lavage fluid was harvested in the early (7 days) and late (35 days) preclinical phases of PIA. Chemokine and cytokine levels were measured in lavage supernatant with ELISA, peritoneal inflammatory leukocytes were immunophenotyped by flow cytometry, and gene expression was determined by qRT-PCR. Leukocyte recruitment was quantitatively and qualitatively divergent in the peritoneum of HIII and LIII mice, with an early increase of CC chemokines (CCL2/CCL3/CCL5/CCL12/CCL22) in the susceptible LIII strain. Also, cytokines such as IL-12p40, IL-23, and IL-18 were elevated in LIII mice while IL-6 was increased in HIII animals. The results show that an early peritoneal CC chemokine response is an important feature of arthritis susceptibility and defines potential biomarkers in this model.

9.
Biomed Res Int ; 2019: 2641098, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15895

RESUMEN

The inflammatory and autoimmune events preceding clinical symptoms in rheumatoid arthritis (RA) and other autoimmune diseases are difficult to study in human patients. Therefore, animal models that share immunologic and clinical features with human RA, such as pristane-induced arthritis (PIA), are valuable tools for assessing the primordial events related to arthritis susceptibility. PIA-resistant HIII and susceptible LIII mice were injected i.p. with pristane, and peritoneal lavage fluid was harvested in the early (7 days) and late (35 days) preclinical phases of PIA. Chemokine and cytokine levels were measured in lavage supernatant with ELISA, peritoneal inflammatory leukocytes were immunophenotyped by flow cytometry, and gene expression was determined by qRT-PCR. Leukocyte recruitment was quantitatively and qualitatively divergent in the peritoneum of HIII and LIII mice, with an early increase of CC chemokines (CCL2/CCL3/CCL5/CCL12/CCL22) in the susceptible LIII strain. Also, cytokines such as IL-12p40, IL-23, and IL-18 were elevated in LIII mice while IL-6 was increased in HIII animals. The results show that an early peritoneal CC chemokine response is an important feature of arthritis susceptibility and defines potential biomarkers in this model.

10.
Biomed Res Int ; 2018: 1267038, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30402460

RESUMEN

Mouse lines selected for maximal (AIRmax) or minimal acute inflammatory reaction (AIRmin) were used to characterize the immune response and the influence of genetic background during pristane-induced arthritis (PIA). Susceptible AIRmax mice demonstrated exacerbated cellular profiles during PIA, with intense infiltration of lymphocytes, as well as monocytes/macrophages and neutrophils, producing higher levels of IL-1ß, IFN-γ, TNF-α, IL-10, total IgG3, and chemokines. Resistant AIRmin mice controlled cell activation more efficiently than the AIRmax during arthritis progression. The weight alterations of the spleen and thymus in the course of PIA were observed. Our data suggest that selected AIRmax cellular and genetic immune mechanisms contribute to cartilage damage and arthritis severity, evidencing many targets for therapeutic actions.


Asunto(s)
Artritis Experimental/inmunología , Citocinas/inmunología , Inmunoglobulina G/inmunología , Terpenos/efectos adversos , Enfermedad Aguda , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/genética , Artritis Experimental/patología , Citocinas/genética , Inmunoglobulina G/genética , Inflamación , Ratones , Bazo/inmunología , Bazo/patología , Terpenos/farmacología , Timo/inmunología , Timo/patología
11.
Biomed Res. Int. ; 2018(1267038): 1-10, out.8, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IPPROD, Sec. Est. Saúde SP | ID: biblio-1016544

RESUMEN

Mouse lines selected for maximal (AIRmax) or minimal acute inflammatory reaction (AIRmin) were used to characterize the immune response and the influence of genetic background during pristane-induced arthritis (PIA). Susceptible AIRmax mice demonstrated exacerbated cellular profiles during PIA, with intense infiltration of lymphocytes, as well as monocytes/macrophages and neutrophils, producing higher levels of IL-1ß, IFN-γ, TNF-α, IL-10, total IgG3, and chemokines. Resistant AIRmin mice controlled cell activation more efficiently than the AIRmax during arthritis progression. The weight alterations of the spleen and thymus in the course of PIA were observed. Our data suggest that selected AIRmax cellular and genetic immune mechanisms contribute to cartilage damage and arthritis severity, evidencing many targets for therapeutic actions.


Asunto(s)
Animales , Artritis Experimental , Reacción de Fase Aguda , Ratones Transgénicos
12.
Biomed Res Int, v. 2018, 1267038, 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2605

RESUMEN

Mouse lines selected for maximal (AIRmax) or minimal acute inflammatory reaction (AIRmin) were used to characterize the immune response and the influence of genetic background during pristane-induced arthritis (PIA). Susceptible AIRmax mice demonstrated exacerbated cellular profiles during PIA, with intense infiltration of lymphocytes, as well as monocytes/macrophages and neutrophils, producing higher levels of IL-1ß, IFN-?, TNF-a, IL-10, total IgG3, and chemokines. Resistant AIRmin mice controlled cell activation more efficiently than the AIRmax during arthritis progression. The weight alterations of the spleen and thymus in the course of PIA were observed. Our data suggest that selected AIRmax cellular and genetic immune mechanisms contribute to cartilage damage and arthritis severity, evidencing many targets for therapeutic actions.

13.
Biomed Res. Int. ; 2018: 1267038, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15679

RESUMEN

Mouse lines selected for maximal (AIRmax) or minimal acute inflammatory reaction (AIRmin) were used to characterize the immune response and the influence of genetic background during pristane-induced arthritis (PIA). Susceptible AIRmax mice demonstrated exacerbated cellular profiles during PIA, with intense infiltration of lymphocytes, as well as monocytes/macrophages and neutrophils, producing higher levels of IL-1ß, IFN-?, TNF-a, IL-10, total IgG3, and chemokines. Resistant AIRmin mice controlled cell activation more efficiently than the AIRmax during arthritis progression. The weight alterations of the spleen and thymus in the course of PIA were observed. Our data suggest that selected AIRmax cellular and genetic immune mechanisms contribute to cartilage damage and arthritis severity, evidencing many targets for therapeutic actions.

14.
ISRN Inflamm ; 2014: 563628, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24563803

RESUMEN

Snake venom has been the subject of numerous studies in an attempt to find properties and biological effects that may be beneficial to man. In this study we evaluated in vitro the effects of Crotalus durissus terrificus (Cdt) and Crotalus durissus collilineatus (Cdc) venom in human peripheral blood mononuclear cells (PBMCs). At 24 h, a significant decrease of viable cells was observed in cells stimulated with the Cdc venom at 0.0005 mg/mL and 0.005 mg/mL compared to the negative control. At 48 h, a significant decrease of viable cells was observed only in cells stimulated with Cdc venom at 0.005 mg/mL. A significant increase of TNF- α and IL-10 was detected 48 hours after culture of PBMC with Cdc, but not with Cdt venom. The expression of CD69 and PD1 (programmed death-1), activation and regulatory cell markers, on CD8+ and CD8- T cells did not change in the presence of Cdt and Cdc venom. Our results suggest the presence of proinflammatory and anti-inflammatory components in the Cdc venom. Further analysis should be done to identify those Cdc venom components as it has been done for the Cdt venom by other authors, indicating that modulatory components are found in the venom of different species of Crotalus snakes.

15.
ISRN Parasitol ; 2013: 180652, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-27335846

RESUMEN

Lagochilascariosis is an emerging parasitic disease caused by the helminth Lagochilascaris minor. The experimental mouse model has been used to study the immune response against L. minor infection. In the present work, immunohistochemistry analysis of spleen cells populations was evaluated in susceptible (C57BL/6) and resistant (BALB/c) mice experimentally infected with L. minor. The BALB/c mice exhibited increased spleen cell indexes as follows: F4/80+ at 100 days after infection (DPI), CD4+ at 100 and 250 DPI, CD8+ at 35 and 100 DPI, and CD19+ at 100, 150, and 250 DPI. In the spleens of the infected C57BL/6 mice, increased indexes of the following spleen cells were observed: F4/80+ cells at 250 DPI, CD4+ cells at 150 DPI, CD8+ cells at 35, 150, and 250 DPI, and CD19+ cells at 150 to 250 DPI. The index of spleen cells confirmed the differences between the control and infected groups at several time points following the infection. These data demonstrate an association between a preferential increase in the number of CD4+ and CD19+ spleen cells and resistance to experimental lagochilascariosis in BALB/c mice and between a preferential increase in the number of CD8+ spleen cells and susceptibility in C57BL/6 mice.

16.
Einstein (Säo Paulo) ; 9(1)jan.-mar. 2011. tab
Artículo en Inglés, Portugués | LILACS, Sec. Est. Saúde SP | ID: lil-583370

RESUMEN

Objective: To assess the long-term impact (minimum of 3 years follow-up) of polymorphisms in cytokine genes in donor: recipient pairs on the results of the transplant. Methods: We compared genetic cytokine polymorphisms and the primary factors of risk for the development of chronic rejection in paired groups of renal transplant patients with and without chronic allograft nephropathy [CAN]. Results: Multivariate analysis indicated that the presence of the high-production TT genotype (codon 10) of the transforming growth factor beta-1 (TGFB1) was protective in receptors (p=0.017), contrasting with the increased risk when present in donor samples (p=0.049). On the other hand, in the case of the gamma interferon studied, the greater frequency of the high production allele was protective in the analysis of the donor group (p=0.013), increasing the risk of chronic nephropathy of the allograft when present in the recipients (p=0.036). Conclusion: Our results highlight the importance of TGFB1 genotyping in donors, and indicate that polymorphisms in the gene of this cytokine in donor cells might contribute to the development of chronic allograft nephropathy.


Objetivo: Avaliar o impacto de longo prazo (com seguimento mínimo de 2 anos) de polimorfismos em genes de citocinas em pares doador:receptor sobre os resultados do transplante. Métodos: Comparamos os polimorfismos genéticos das citocinas e os principais fatores de risco para o desenvolvimento de rejeição crônica em grupos pareados de pacientes transplantados renais com e sem nefropatia crônica do aloenxerto [CAN]. Resultados: A análise multivariada indicou que a presença do genótipo TT (códon 10) de alta produção do fator de crescimento transformador beta-1 (TGFB1) era protetor nos receptores (p=0,017), em contraste com o risco aumentado quando presente nas amostras de doadores (p=0,049). Por outro lado, no caso do interferon gama estudado, a maior frequência do alelo de alta produção foi protetora na análise do grupo de doadores (p=0,013), mas aumentava o risco de nefropatia crônica do aloenxerto quando presente nos receptores (p=0,036). Conclusão: Nossos resultados ressaltam a importância da genotipagem de TGFB1 também em doadores, e indicam que polimorfismos no gene desta citocina em células do doador podem contribuir no desenvolvimento da nefropatia crônica do aloenxerto.


Asunto(s)
Factor de Crecimiento Transformador beta1 , Genotipo , Interferón gamma , Polimorfismo Genético , Trasplante Homólogo
17.
Einstein (Sao Paulo) ; 9(1): 46-51, 2011 Mar.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-26760552

RESUMEN

OBJECTIVE: To assess the long-term impact (minimum of 3 years follow-up) of polymorphisms in cytokine genes in donor:recipient pairs on the results of the transplant. METHODS: We compared genetic cytokine polymorphisms and the primary factors of risk for the development of chronic rejection in paired groups of renal transplant patients with and without chronic allograft nephropathy [CAN]. RESULTS: Multivariate analysis indicated that the presence of the high-production TT genotype (codon 10) of the transforming growth factor beta-1 (TGFB1) was protective in receptors (p=0.017), contrasting with the increased risk when present in donor samples (p=0.049). On the other hand, in the case of the gamma interferon studied, the greater frequency of the high production allele was protective in the analysis of the donor group (p=0.013), increasing the risk of chronic nephropathy of the allograft when present in the recipients (p=0.036). CONCLUSION: Our results highlight the importance of TGFB1 genotyping in donors, and indicate that polymorphisms in the gene of this cytokine in donor cells might contribute to the development of chronic allograft nephropathy.

18.
J Parasitol Res ; 20102010.
Artículo en Inglés | MEDLINE | ID: mdl-20721343

RESUMEN

Recently, we demonstrated that C57BL/6 mice are more susceptible to experimental lagochilascariosis than BALB/c mice. To investigate the pattern of infection and the role of the genetic background on susceptibility to infection, we studied experimental lagochilascariosis in H-2(a) identical B10.A and A/J mice. Infected B10.A mice had a lower survival ratio and more severe lesions in the lungs than did A/J mice. Splenocytes of A/J mice immunized with the crude extract of the parasite showed increased proliferation and produced a higher level of interleukin 10 and interferon-gamma in the presence of CE or concanavalin A when compared to B10.A mice. This suggests that resistance of A/J mice may be due to less severe lesions in lungs and other organs and a better immune response to parasite antigens. This paper provides evidence that major histocompatibility complex haplotype does not influence the survival to experimental infection with L. minor.

19.
Mol Immunol ; 47(16): 2537-44, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20674029

RESUMEN

Snake venoms are a complex mixture of components, which have a wide range of actions both on prey and human victims. The genus Bothrops causes the vast majority of snakebites in Central and South America, being responsible for 80% of snake envenomations in Brazil. Envenomations are characterized by prominent local effects, including oedema, haemorrhage and necrosis, which can lead to permanent disability. Systemic manifestations such as haemorrhage, coagulopathy, shock and acute renal failure may also occur. In the present study we have investigated the action of venoms from 19 species of snakes from the genus Bothrops, occurring in Brazil, on the complement system in in vitro studies. All venoms were able to activate the classical complement pathway, in the absence of sensitizing antibody. This activation was in part associated with the cleavage of C1-Inhibitor by proteases present in these venoms, which disrupts complement activation control. No modification of the membrane bound complement regulators, such as DAF, CR1 and CD59 was detected, after treatment of human erythrocytes with the snake venoms. Some of the Bothrops venoms were also able to activate alternative and lectin pathways, as measured in haemolytic and ELISA assays. C3a, C4a and C5a were generated in sera treated with the venoms, not only through C-activation, but also by the direct cleavage of complement components, as determined using purified C3 and C4. Metallo- and/or serine-protease inhibitors prevented cleavage of C3 and C4. These results suggest that Bothrops venoms can activate the complement system, generating a large amount of anaphylatoxins, which may play an important role in the inflammatory process presented in humans after snake envenomations, and they may also assist, due to their vasodilatory effects, to enhance the spreading of other venom components.


Asunto(s)
Anafilatoxinas/inmunología , Bothrops/inmunología , Activación de Complemento , Venenos de Víboras/inmunología , Anafilatoxinas/biosíntesis , Animales , Humanos , Metaloproteasas/metabolismo , Serina Proteasas/metabolismo
20.
Mol. immunol ; 47(16): 2537-2544, July 31, 2010.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064789

RESUMEN

Snake venoms are a complex mixture of components, which have a wide range of actions both on prey and human victims. The genus Bothrops causes the vast majority of snakebites in Central and South America, being responsible for 80% of snake envenomations in Brazil. Envenomations are characterizedby prominent local effects, including oedema, haemorrhage and necrosis, which can lead to permanent disability. Systemic manifestations such as haemorrhage, coagulopathy, shock and acute renal failure may also occur.In the present study we have investigated the action of venoms from 19 species of snakes from the genus Bothrops, occurring in Brazil, on the complement system in in vitro studies. All venoms were able to activate the classical complement pathway, in the absence of sensitizing antibody. This activation wasin part associated with the cleavage of C1-Inhibitor by proteases present in these venoms, which disrupts complement activation control. No modification of the membrane bound complement regulators, such as DAF, CR1 and CD59 was detected, after treatment of human erythrocytes with the snake venoms. Some of the Bothrops venoms were also able to activate alternative and lectin pathways, as measured in haemolytic and ELISA assays. C3a, C4a and C5a were generated in sera treated with the venoms, not only through C-activation, but also by the direct cleavage of complement components, as determined using purified C3 and C4. Metallo- and/or serine-protease inhibitors prevented cleavage of C3 and C4. Theseresults suggest that Bothrops venoms can activate the complement system, generating a large amount of anaphylatoxins, which may play an important role in the inflammatory process presented in humans after snake envenomations, and they may also assist, due to their vasodilatory effects, to enhance the spreading of other venom components.


Asunto(s)
Humanos , Animales , Bothrops , Serpientes/clasificación , Venenos de Serpiente , Venenos de Serpiente/antagonistas & inhibidores , Venenos de Serpiente/efectos adversos , Venenos de Serpiente/toxicidad , América Central , América del Sur , Brasil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...