Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Islets ; 15(1): 2267725, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838950

RESUMEN

The pancreatic ß cell synthesizes, packages, and secretes insulin in response to glucose-stimulation to maintain blood glucose homeostasis. Under diabetic conditions, a subset of ß cells fail and lose expression of key transcription factors (TFs) required for insulin secretion. Among these TFs is Pancreatic and duodenal homeobox 1 (PDX1), which recruits a unique subset of transcriptional coregulators to modulate its activity. Here we describe a novel interacting partner of PDX1, the Staphylococcal Nuclease and Tudor domain-containing protein (SND1), which has been shown to facilitate protein-protein interactions and transcriptional control through diverse mechanisms in a variety of tissues. PDX1:SND1 interactions were confirmed in rodent ß cell lines, mouse islets, and human islets. Utilizing CRISPR-Cas9 gene editing technology, we deleted Snd1 from the mouse ß cell lines, which revealed numerous differentially expressed genes linked to insulin secretion and cell proliferation, including limited expression of Glp1r. We observed Snd1 deficient ß cell lines had reduced cell expansion rates, GLP1R protein levels, and limited cAMP accumulation under stimulatory conditions, and further show that acute ablation of Snd1 impaired insulin secretion in rodent and human ß cell lines. Lastly, we discovered that PDX1:SND1 interactions were profoundly reduced in human ß cells from donors with type 2 diabetes (T2D). These observations suggest the PDX1:SND1 complex formation is critical for controlling a subset of genes important for ß cell function and is targeted in diabetes pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dominio Tudor
2.
Diabetes ; 72(6): 746-757, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913741

RESUMEN

The transcriptional activity of Pdx1 is modulated by a diverse array of coregulatory factors that govern chromatin accessibility, histone modifications, and nucleosome distribution. We previously identified the Chd4 subunit of the nucleosome remodeling and deacetylase complex as a Pdx1-interacting factor. To identify how loss of Chd4 impacts glucose homeostasis and gene expression programs in ß-cells in vivo, we generated an inducible ß-cell-specific Chd4 knockout mouse model. Removal of Chd4 from mature islet ß-cells rendered mutant animals glucose intolerant, in part due to defects in insulin secretion. We observed an increased ratio of immature-to-mature insulin granules in Chd4-deficient ß-cells that correlated with elevated levels of proinsulin both within isolated islets and from plasma following glucose stimulation in vivo. RNA sequencing and assay for transposase-accessible chromatin with sequencing showed that lineage-labeled Chd4-deficient ß-cells have alterations in chromatin accessibility and altered expression of genes critical for ß-cell function, including MafA, Slc2a2, Chga, and Chgb. Knockdown of CHD4 from a human ß-cell line revealed similar defects in insulin secretion and alterations in several ß-cell-enriched gene targets. These results illustrate how critical Chd4 activities are in controlling genes essential for maintaining ß-cell function. ARTICLE HIGHLIGHTS: Pdx1-Chd4 interactions were previously shown to be compromised in ß-cells from human donors with type 2 diabetes. ß-Cell-specific removal of Chd4 impairs insulin secretion and leads to glucose intolerance in mice. Expression of key ß-cell functional genes and chromatin accessibility are compromised in Chd4-deficient ß-cells. Chromatin remodeling activities enacted by Chd4 are essential for ß-cell function under normal physiological conditions.


Asunto(s)
Cromatina , Diabetes Mellitus Tipo 2 , Ratones , Animales , Humanos , Cromatina/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Diabetes Mellitus Tipo 2/genética , ADN Helicasas/genética , Ratones Noqueados , Expresión Génica , Glucosa
4.
J Mol Endocrinol ; 69(2): 329-341, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35521759

RESUMEN

Type 2 diabetes (T2D) is associated with loss of transcription factors (TFs) from a subset of failing ß-cells. Among these TFs is Pdx1, which controls the expression of numerous genes involved in maintaining ß-cell function and identity. Pdx1 activity is modulated by transcriptional coregulators and has recently been shown, through an unbiased screen, to interact with the Chd4 ATPase subunit of the nucleosome remodeling and deacetylase complex. Chd4 contributes to the maintenance of cellular identity and functional status of numerous different cell types. Here, we demonstrated that Pdx1 dynamically interacts with Chd4 under physiological and stimulatory conditions within islet ß-cells and established a fundamental role for Chd4 in regulating insulin secretion and modulating numerous Pdx1-bound genes in vitro, including the MafA TF, where we discovered Chd4 is bound to the MafA region 3 enhancer. Furthermore, we found that Pdx1:Chd4 interactions are significantly compromised in islet ß-cells under metabolically induced stress in vivo and in human donor tissues with T2D. Our findings establish a fundamental role for Chd4 in regulating insulin secretion and modulating Pdx1-bound genes in vitro, and disruption of Pdx1:Chd4 interactions coincides with ß-cell dysfunction associated with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Endocrinology ; 162(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33211800

RESUMEN

Islet ß-cell dysfunction that leads to impaired insulin secretion is a principal source of pathology of diabetes. In type 2 diabetes, this breakdown in ß-cell health is associated with compromised islet-enriched transcription factor (TF) activity that disrupts gene expression programs essential for cell function and identity. TF activity is modulated by recruited coregulators that govern activation and/or repression of target gene expression, thereby providing a supporting layer of control. To date, more than 350 coregulators have been discovered that coordinate nucleosome rearrangements, modify histones, and physically bridge general transcriptional machinery to recruited TFs; however, relatively few have been attributed to ß-cell function. Here, we will describe recent findings on those coregulators with direct roles in maintaining islet ß-cell health and identity and discuss how disruption of coregulator activity is associated with diabetes pathogenesis.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Complejo Mediador/metabolismo
6.
Diabetes ; 68(9): 1806-1818, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31201281

RESUMEN

Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet ß-cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes-linked transcription factor essential to pancreatic morphogenesis and adult islet cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet ß-cell activity, which included whole-animal glucose intolerance, hyperglycemia, and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient ß-cells lost the ability to produce the mRNAs for Ins and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors. Swi/Snf was necessary for Pdx1 to bind to the Ins gene enhancer, demonstrating the importance of this association in mediating chromatin accessibility. These results illustrate how fundamental the Pdx1:Swi/Snf coregulator complex is in the pancreas, and we discuss how disrupting their association could influence type 1 and type 2 diabetes susceptibility.


Asunto(s)
Proliferación Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , ADN Helicasas/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/metabolismo , Páncreas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , ADN Helicasas/genética , Regulación de la Expresión Génica , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Proteínas de Homeodominio/genética , Insulina/sangre , Células Secretoras de Insulina/citología , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Páncreas/citología , Transactivadores/genética , Factores de Transcripción/genética
7.
JCI Insight ; 52019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964447

RESUMEN

Imatinib (Gleevec) reverses type 1 diabetes (T1D) in NOD mice and is currently in clinical trials in individuals with recent-onset disease. While research has demonstrated that imatinib protects islet ß cells from the harmful effects of ER stress, the role the immune system plays in its reversal of T1D has been less well understood, and specific cellular immune targets have not been identified. In this study, we demonstrate that B lymphocytes, an immune subset that normally drives diabetes pathology, are unexpectedly required for reversal of hyperglycemia in NOD mice treated with imatinib. In the presence of B lymphocytes, reversal was linked to an increase in serum insulin concentration, but not an increase in islet ß cell mass or proliferation. However, improved ß cell function was reflected by a partial recovery of MafA transcription factor expression, a sensitive marker of islet ß cell stress that is important to adult ß cell function. Imatinib treatment was found to increase the antioxidant capacity of B lymphocytes, improving reactive oxygen species (ROS) handling in NOD islets. This study reveals a novel mechanism through which imatinib enables B lymphocytes to orchestrate functional recovery of T1D ß cells.


Asunto(s)
Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Mesilato de Imatinib/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Animales , Autoinmunidad/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Hiperglucemia , Mesilato de Imatinib/uso terapéutico , Insulina/sangre , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados
8.
Diabetes ; 68(5): 988-1001, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30833470

RESUMEN

Type 1 diabetes studies consistently generate data showing islet ß-cell dysfunction and T cell-mediated anti-ß-cell-specific autoimmunity. To explore the pathogenesis, we interrogated the ß-cell transcriptomes from donors with and without type 1 diabetes using both bulk-sorted and single ß-cells. Consistent with immunohistological studies, ß-cells from donors with type 1 diabetes displayed increased Class I transcripts and associated mRNA species. These ß-cells also expressed mRNA for Class II and Class II antigen presentation pathway components, but lacked the macrophage marker CD68. Immunohistological study of three independent cohorts of donors with recent-onset type 1 diabetes showed Class II protein and its transcriptional regulator Class II MHC trans-activator protein expressed by a subset of insulin+CD68- ß-cells, specifically found in islets with lymphocytic infiltrates. ß-Cell surface expression of HLA Class II was detected on a portion of CD45-insulin+ ß-cells from donors with type 1 diabetes by immunofluorescence and flow cytometry. Our data demonstrate that pancreatic ß-cells from donors with type 1 diabetes express Class II molecules on selected cells with other key genes in those pathways and inflammation-associated genes. ß-Cell expression of Class II molecules suggests that ß-cells may interact directly with islet-infiltrating CD4+ T cells and may play an immunopathogenic role.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Presentación de Antígeno/inmunología , Autoinmunidad/fisiología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Humanos , Insulina/metabolismo
9.
J Biol Chem ; 293(13): 4870-4882, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29440396

RESUMEN

Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs.


Asunto(s)
Ciclina C/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Exones , Leiomioma/metabolismo , Complejo Mediador/metabolismo , Mutación , Proteínas de Neoplasias/metabolismo , Regulación Alostérica , Ciclina C/genética , Quinasa 8 Dependiente de Ciclina/genética , Quinasas Ciclina-Dependientes/genética , Femenino , Humanos , Leiomioma/genética , Leiomioma/patología , Complejo Mediador/genética , Miometrio/metabolismo , Miometrio/patología , Proteínas de Neoplasias/genética
10.
Diabetes ; 66(11): 2830-2839, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28705881

RESUMEN

The transcription factor encoded by the Pdx1 gene is a critical transcriptional regulator, as it has fundamental actions in the formation of all pancreatic cell types, islet ß-cell development, and adult islet ß-cell function. Transgenic- and cell line-based experiments have identified 5'-flanking conserved sequences that control pancreatic and ß-cell type-specific transcription, which are found within areas I (bp -2694 to -2561), II (bp -2139 to -1958), III (bp -1879 to -1799), and IV (bp -6200 to -5670). Because of the presence in area IV of binding sites for transcription factors associated with pancreas development and islet cell function, we analyzed how an endogenous deletion mutant affected Pdx1 expression embryonically and postnatally. The most striking result was observed in male Pdx1ΔIV mutant mice after 3 weeks of birth (i.e., the onset of weaning), with only a small effect on pancreas organogenesis and no deficiencies in their female counterparts. Compromised Pdx1 mRNA and protein levels in weaned male mutant ß-cells were tightly linked with hyperglycemia, decreased ß-cell proliferation, reduced ß-cell area, and altered expression of Pdx1-bound genes that are important in ß-cell replication, endoplasmic reticulum function, and mitochondrial activity. We discuss the impact of these novel findings to Pdx1 gene regulation and islet ß-cell maturation postnatally.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Transactivadores/metabolismo , Animales , Proliferación Celular , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Noqueados , Fosforilación Oxidativa , Transactivadores/genética , Destete
11.
Diabetologia ; 58(8): 1836-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26021489

RESUMEN

AIMS/HYPOTHESIS: Several forkhead box (FOX) transcription factor family members have important roles in controlling pancreatic cell fates and maintaining beta cell mass and function, including FOXA1, FOXA2 and FOXM1. In this study we have examined the importance of FOXP1, FOXP2 and FOXP4 of the FOXP subfamily in islet cell development and function. METHODS: Mice harbouring floxed alleles for Foxp1, Foxp2 and Foxp4 were crossed with pan-endocrine Pax6-Cre transgenic mice to generate single and compound Foxp mutant mice. Mice were monitored for changes in glucose tolerance by IPGTT, serum insulin and glucagon levels by radioimmunoassay, and endocrine cell development and proliferation by immunohistochemistry. Gene expression and glucose-stimulated hormone secretion experiments were performed with isolated islets. RESULTS: Only the triple-compound Foxp1/2/4 conditional knockout (cKO) mutant had an overt islet phenotype, manifested physiologically by hypoglycaemia and hypoglucagonaemia. This resulted from the reduction in glucagon-secreting alpha cell mass and function. The proliferation of alpha cells was profoundly reduced in Foxp1/2/4 cKO islets through the effects on mediators of replication (i.e. decreased Ccna2, Ccnb1 and Ccnd2 activators, and increased Cdkn1a inhibitor). Adult islet Foxp1/2/4 cKO beta cells secrete insulin normally while the remaining alpha cells have impaired glucagon secretion. CONCLUSIONS/INTERPRETATION: Collectively, these findings reveal an important role for the FOXP1, 2, and 4 proteins in governing postnatal alpha cell expansion and function.


Asunto(s)
Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Células Secretoras de Glucagón/metabolismo , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Glucagón/sangre , Células Secretoras de Glucagón/citología , Insulina/sangre , Ratones , Ratones Transgénicos , Proteínas Represoras/genética
12.
Cell Rep ; 7(3): 654-60, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24746821

RESUMEN

Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at very high frequency (∼70%) in uterine leiomyomas. However, the influence of these mutations on Mediator function and the molecular basis for their tumorigenic potential remain unknown. To clarify the impact of these mutations, we used affinity-purification mass spectrometry to establish the global protein-protein interaction profiles for both wild-type and mutant MED12. We found that uterine leiomyoma-linked mutations in MED12 led to a highly specific decrease in its association with Cyclin C-CDK8/CDK19 and loss of Mediator-associated CDK activity. Mechanistically, this occurs through disruption of a MED12-Cyclin C binding interface that we also show is required for MED12-mediated stimulation of Cyclin C-dependent CDK8 kinase activity. These findings indicate that uterine leiomyoma-linked mutations in MED12 uncouple Cyclin C-CDK8/19 from core Mediator and further identify the MED12/Cyclin C interface as a prospective therapeutic target in CDK8-driven cancers.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Leiomioma/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Neoplasias Uterinas/genética , Ciclina C/metabolismo , Femenino , Células HEK293 , Humanos , Leiomioma/metabolismo , Leiomioma/patología , Mutagénesis Sitio-Dirigida , Unión Proteica , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología
13.
Proc Natl Acad Sci U S A ; 109(48): 19763-8, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23091001

RESUMEN

Recurrent missense mutations in the RNA polymerase II Mediator subunit MED12 are associated with X-linked intellectual disability (XLID) and multiple congenital anomalies, including craniofacial, musculoskeletal, and behavioral defects in humans with FG (or Opitz-Kaveggia) and Lujan syndromes. However, the molecular mechanism(s) underlying these phenotypes is poorly understood. Here we report that MED12 mutations R961W and N1007S causing FG and Lujan syndromes, respectively, disrupt a Mediator-imposed constraint on GLI3-dependent Sonic Hedgehog (SHH) signaling. We show that the FG/R961W and Lujan/N1007S mutations disrupt the gene-specific association of MED12 with a second Mediator subunit, CDK8, identified herein to be a suppressor of GLI3 transactivation activity. In FG/R961W and Lujan/N1007S patient-derived cells, we document enhanced SHH pathway activation and GLI3-target gene induction coincident with impaired recruitment of CDK8 onto promoters of GLI3-target genes, but not non-GLI3-target genes. Together, these findings suggest that dysregulated GLI3-dependent SHH signaling contributes to phenotypes of individuals with FG and Lujan syndromes and further reveal a basis for the gene-specific manifestation of pathogenic mutations in a global transcriptional coregulator.


Asunto(s)
Proteínas Hedgehog/metabolismo , Discapacidad Intelectual/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Complejo Mediador/fisiología , Mutación , Proteínas del Tejido Nervioso/fisiología , Transducción de Señal/fisiología , Línea Celular , Humanos , Regiones Promotoras Genéticas , Proteína Gli3 con Dedos de Zinc
14.
Proc Natl Acad Sci U S A ; 108(49): 19678-82, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22106289

RESUMEN

Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.


Asunto(s)
Cardiomiopatías/dietoterapia , Dieta Cetogénica , Complejo Mediador/genética , Miopatías Mitocondriales/dietoterapia , Mutación Missense , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Electroforesis en Gel de Poliacrilamida , Femenino , Expresión Génica , Genes Letales , Estimación de Kaplan-Meier , Masculino , Complejo Mediador/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Microscopía Electrónica , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Miocardio/metabolismo , Miocardio/patología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Destete
15.
Semin Cell Dev Biol ; 22(7): 776-87, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21840410

RESUMEN

Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Trastornos Mentales/metabolismo , Neoplasias/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Trastornos Mentales/genética , Trastornos Mentales/patología , Neoplasias/genética , Neoplasias/patología , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/metabolismo , Neoplasias Hormono-Dependientes/patología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Subunidades de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...