Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(1): 40-44, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38054559

RESUMEN

The inorganic pyrocarbonate salt Na2[C2O5] crystallizes in the acentric, monoclinic space group P21 with Z = 2. It contains monovalent alkali metal cations together with isolated pyrocarbonate anions. The [C2O5]2--groups consist of two planar [CO3]2--groups which are slightly tilted with respect to each other around the bridging oxygen atom. Na2[C2O5] was synthesized in a laser-heated diamond anvil cell at 20(2) GPa by heating a mixture of Na2[CO3] + CO2 to ≈800(200) K. Its crystal structure was obtained by single crystal synchrotron X-ray diffraction and confirmed by density functional theory-based calculations in combination with Raman spectroscopy. Second harmonic generation measurements verified the acentric space group symmetry. The crystal structure is characterized by alternating layers of Na+-cations and [C2O5]2--complex anions.

2.
Chem Commun (Camb) ; 59(80): 11951-11954, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37747265

RESUMEN

The inorganic pyrocarbonate salt Ba[C2O5] contains twisted pyrocarbonate anions ([C2O5]2-), an atomic arrangement previously not observed in other pyrocarbonates. This unexpected additional structural degree of freedom points towards an enlarged chemical variability in this novel group of compounds. Ba[C2O5] was synthesized in a laser-heated diamond anvil cell at 30(2) GPa by heating a mixture of Ba[CO3] + CO2 to ≈ 1500(200) K. Its crystal structure was solved from single crystal synchrotron X-ray diffraction data and confirmed by density functional theory-based calculations. The two planar [CO3]2--groups of the [C2O5]2--anion are strongly twisted around the bridging oxygen atom. Ba[C2O5] has been observed in the pressure range of 5-30 GPa, where its symmetry is P6/m with Z = 12.

3.
Inorg Chem ; 62(34): 13910-13918, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37579301

RESUMEN

We synthesized the inorganic anhydrous aluminum carbonates Al2[C2O5][CO3]2 and Al2[CO3]3 by reacting Al2O3 with CO2 at high pressures and temperatures and characterized them by Raman spectroscopy. Their structures were solved by X-ray diffraction. Al2[CO3]3 forms at around 24-28 GPa, while Al2[C2O5][CO3]2 forms above 38(3) GPa. The distinguishing feature of the new Al2[C2O5][CO3]2-structure type is the presence of pyrocarbonate [C2O5]2--groups, trigonal [CO3]2─groups, and octahedrally coordinated trivalent cations. Al2[CO3]3 has isolated [CO3]2--groups. Both Al-carbonates can be recovered under ambient conditions. Density functional theory calculations predict that CO2 will react with Fe2O3, Ti2O3, Ga2O3, In2O3, and MgSiO3 at high pressures to form compounds which are isostructural to Al2[C2O5][CO3]2. MgSi[C2O5][CO3]2 is predicted to be stable at pressures relative to abundant mantle minerals in the presence of CO2. This structure type allows the incorporation of four elements (Mg, Si, Fe, and Al) abundant in the Earth's mantle in octahedral coordination and provides an alternative phase with novel carbon speciation for carbon storage in the deep Earth.

4.
Inorg Chem ; 61(26): 9855-9859, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35730801

RESUMEN

We have synthesized Pb[C2O5], an inorganic pyrocarbonate salt, in a laser-heated diamond anvil cell (LH-DAC) at 30 GPa by heating a Pb[CO3] + CO2 mixture to ≈2000(200) K. Inorganic pyrocarbonates contain isolated [C2O5]2- groups without functional groups attached. The [C2O5]2- groups consist of two oxygen-sharing [CO3]3- groups. Pb[C2O5] was characterized by synchrotron-based single-crystal structure refinement, Raman spectroscopy, and density functional theory calculations. Pb[C2O5] is isostructural to Sr[C2O5] and crystallizes in the monoclinic space group P21/c with Z = 4. The synthesis of Pb[C2O5] demonstrates that, just like in other carbonates, cation substitution is possible and that therefore inorganic pyrocarbonates are a novel family of carbonates, in addition to the established sp2 and sp3 carbonates.

5.
J Am Chem Soc ; 144(7): 2899-2904, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35134291

RESUMEN

The synthesis of a novel type of carbonate, namely of the inorganic pyrocarbonate salt Sr[C2O5], which contains isolated [C2O5]2--groups, significantly extends the crystal chemistry of inorganic carbonates beyond the established sp2- and sp3-carbonates. We synthesized Sr[C2O5] in a laser-heated diamond anvil cell by reacting Sr[CO3] with CO2. By single crystal synchrotron diffraction, Raman spectroscopy, and density functional theory (DFT) calculations, we show that it is a pyrocarbonate salt. Sr[C2O5] is the first member of a novel family of inorganic carbonates. We predict, based on DFT calculations, that further inorganic pyrocarbonates can be obtained and that these will be relevant to geoscience and may provide a better understanding of reactions converting CO2 into useful inorganic compounds.

6.
Inorg Chem ; 60(19): 14504-14508, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34520201

RESUMEN

We have synthesized the orthocarbonate Sr3[CO4]O in a laser-heated diamond anvil cell at 20 and 30 GPa by heating to ≈3000 (300) K. Afterward, we recovered the orthocarbonate with [CO4]4- groups at ambient conditions. Single-crystal diffraction shows the presence of [CO4]4- groups, i.e., sp3-hybridized carbon tetrahedrally coordinated by covalently bound oxygen atoms. The [CO4]4- tetrahedra are located in a cage formed by corner-sharing OSr6 octahedra, i.e., octahedra with oxygen as a central ion, forming an antiperovskite-type structure. At high pressures, the octahedra are nearly ideal and slightly rotated. The high-pressure phase is tetragonal (I4/mcm). Upon pressure release, there is a phase transition with a symmetry lowering to an orthorhombic phase (Pnma), where the octahedra tilt and deform slightly.

7.
J Appl Crystallogr ; 54(Pt 1): 287-294, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33833654

RESUMEN

The complete elastic stiffness tensor of thiourea has been determined from thermal diffuse scattering (TDS) using high-energy photons (100 keV). Comparison with earlier data confirms a very good agreement of the tensor coefficients. In contrast with established methods to obtain elastic stiffness coefficients (e.g. Brillouin spectroscopy, inelastic X-ray or neutron scattering, ultrasound spectroscopy), their determination from TDS is faster, does not require large samples or intricate sample preparation, and is applicable to opaque crystals. Using high-energy photons extends the applicability of the TDS-based approach to organic compounds which would suffer from radiation damage at lower photon energies.

8.
Inorg Chem ; 60(8): 5419-5422, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33813824

RESUMEN

We have synthesized the orthocarbonate Sr2CO4, in which carbon is tetrahedrally coordinated by four oxygen atoms, at moderately high pressures [20(1) GPa] and high temperatures (≈3500 K) in a diamond anvil cell by reacting a SrCO3 single crystal with SrO powder. We show by synchrotron powder X-ray diffraction, Raman spectroscopy, and density functional thoery calculations that this phase, and hence sp3-hybridized carbon in a CO44- group, can be recovered at ambient conditions. The C-O bond distances are all of similar lengths [≈1.41(1) Å], and the O-C-O angles deviate from the ideal tetrahedral angle by a few degrees only.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 6): 979-991, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33289710

RESUMEN

High-pressure single-crystal to 20 GPa and powder diffraction measurements to 50 GPa, show that the structure of Pb2SnO4 strongly distorts on compression with an elongation of one axis. A structural phase transition occurs between 10 GPa and 12 GPa, with a change of space group from Pbam to Pnam. The resistivity decreases by more than six orders of magnitude when pressure is increased from ambient conditions to 50 GPa. This insulator-to-semiconductor transition is accompanied by a reversible appearance change from transparent to opaque. Density functional theory-based calculations show that at ambient conditions the channels in the structure host the stereochemically-active Pb 6s2 lone electron pairs. On compression the lone electron pairs form bonds between Pb2+ ions. Also provided is an assignment of irreducible representations to the experimentally observed Raman bands.

10.
J Phys Condens Matter ; 31(5): 055703, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523844

RESUMEN

In order to resolve inconsistencies encountered in published data for SrSO[Formula: see text], the elasticity and the phase stability of celestite has been studied using thermal diffuse scattering, high pressure powder synchrotron x-ray diffraction, Raman scattering and DFT calculations. The structure of SrSO[Formula: see text] is found to be stable up to 62 GPa at ambient temperature. The preferred values for the components of the elastic stiffness tensor have been determined using x-ray thermal diffuse scattering and are (in GPa): [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]. The preferred value for the bulk modulus is [Formula: see text] GPa. This work shows that thermal diffuse scattering collected at two temperatures allows the determination of the full elastic tensor of crystals with low space group symmetry.

11.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 291-300, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830650

RESUMEN

A new polymorph of the double carbonate BaCa(CO3)2, `a C2 phase', has been synthesized. Its structure has been obtained by density-functional-theory-based (DFT-based) model calculations and has been refined by Rietveld analysis of X-ray powder diffraction data. The structure of the new polymorph differs significantly from those of the established polymorphs barytocalcite, paralstonite and alstonite. The unit-cell parameters of the new monoclinic (space group C2) compound are a = 6.6775 (5), b = 5.0982 (4), c = 4.1924 (3) Å, ß = 109.259 (1)°. The new compound has been further characterized using Raman spectroscopy. This work shows that earlier studies have misidentified the products of an established synthesis route and that findings based on the incorrect identification of the synthesis product concerning the suitability of barytocalcite as a matrix for the retention of radioactive isotopes will need to be reconsidered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA