Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 15(5): e1006475, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31059498

RESUMEN

Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity in the olivary network during its dynamic response to sensory modulation. Thus, interactions between intrinsic properties and extrinsic inputs can explain the variations of spiking activity of olivary neurons, providing a temporal framework for the creation of both the short-term and long-term changes in cerebellar output.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Olivar/fisiología , Animales , Cerebelo/fisiología , Fenómenos Electrofisiológicos , Femenino , Uniones Comunicantes/fisiología , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Periodicidad
2.
Elife ; 72018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30561331

RESUMEN

Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/fisiología , Células de Purkinje/fisiología , Reflejo/fisiología , Vibrisas/fisiología , Animales , Cerebelo/citología , Potenciación a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estimulación Física , Tacto
3.
Cell Rep ; 13(9): 1977-88, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655909

RESUMEN

Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebelosa/metabolismo , Animales , Parpadeo/fisiología , Fenómenos Electrofisiológicos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo
4.
Ann Neurol ; 77(6): 1027-49, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25762286

RESUMEN

OBJECTIVE: Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike-and-wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures. METHODS: Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short-lasting, on-demand CN stimulation could disrupt epileptic seizures. RESULTS: We found that a subset of CN neurons show phase-locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ-aminobutyric acid type A (GABA-A) agonist muscimol increased GSWD occurrence up to 37-fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA-A antagonist gabazine decimated its occurrence. A single short-lasting (30-300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed-loop system, GSWDs were detected and stopped within 500 milliseconds. INTERPRETATION: CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated.


Asunto(s)
Potenciales de Acción/fisiología , Núcleos Cerebelosos/fisiopatología , Epilepsia Tipo Ausencia/fisiopatología , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Calcio Tipo N/genética , Núcleos Cerebelosos/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Antagonistas del GABA/farmacología , Agonistas de Receptores de GABA-A/farmacología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Neuronas/efectos de los fármacos , Optogenética , Tálamo/efectos de los fármacos , Tálamo/fisiopatología
5.
J Neurosci ; 34(5): 1949-62, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24478374

RESUMEN

Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as the RW became narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum-cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing.


Asunto(s)
Aprendizaje por Asociación/fisiología , Cerebelo/citología , Cerebelo/fisiología , Potenciación a Largo Plazo/fisiología , Células de Purkinje/fisiología , Vibrisas/inervación , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Conducta de Ingestión de Líquido/fisiología , Femenino , Potenciación a Largo Plazo/genética , Ratones , Percepción de Movimiento/fisiología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Tiempo de Reacción/fisiología , Sinapsis/fisiología , Factores de Tiempo , Vigilia , Privación de Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA