Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895199

RESUMEN

Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene and metagenomic sequencing revealed significant shifts in gut microbial community structure during treatment with oral fluoropyrimidines, which was validated in an independent cohort. Gene abundance was also markedly changed by oral fluoropyrimidines, including an enrichment for the preTA operon, which is sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). Higher levels of preTA led to increased 5-FU depletion by the gut microbiota grown ex vivo. Germ-free and antibiotic-treated mice had increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA+ E. coli, or CRC patient stool with high preTA levels. preTA abundance was negatively associated with patient toxicities. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach is generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.

2.
mBio ; 14(5): e0157323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37642463

RESUMEN

IMPORTANCE: This work has broad relevance due to the ubiquity of dyes containing azo bonds in food and drugs. We report that azo dyes can be degraded by human gut bacteria through both enzymatic and nonenzymatic mechanisms, even from a single gut bacterial species. Furthermore, we revealed that environmental factors, oxygen, and L-Cysteine control the ability of E. coli to degrade azo dyes due to their impacts on bacterial transcription and metabolism. These results open up new opportunities to manipulate the azoreductase activity of the gut microbiome through the manipulation of host diet, suggest that azoreductase potential may be altered in patients suffering from gastrointestinal disease, and highlight the importance of studying bacterial enzymes for drug metabolism in their natural cellular and ecological context.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Humanos , Colorantes/metabolismo , Anaerobiosis , Escherichia coli/metabolismo , Bacterias/metabolismo , Compuestos Azo/química , Compuestos Azo/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Bacterianas/metabolismo
3.
Nat Microbiol ; 7(10): 1605-1620, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138165

RESUMEN

Pharmaceuticals have extensive reciprocal interactions with the microbiome, but whether bacterial drug sensitivity and metabolism is driven by pathways conserved in host cells remains unclear. Here we show that anti-cancer fluoropyrimidine drugs inhibit the growth of gut bacterial strains from 6 phyla. In both Escherichia coli and mammalian cells, fluoropyrimidines disrupt pyrimidine metabolism. Proteobacteria and Firmicutes metabolized 5-fluorouracil to its inactive metabolite dihydrofluorouracil, mimicking the major host mechanism for drug clearance. The preTA operon was necessary and sufficient for 5-fluorouracil inactivation by E. coli, exhibited high catalytic efficiency for the reductive reaction, decreased the bioavailability and efficacy of oral fluoropyrimidine treatment in mice and was prevalent in the gut microbiomes of colorectal cancer patients. The conservation of both the targets and enzymes for metabolism of therapeutics across domains highlights the need to distinguish the relative contributions of human and microbial cells to drug efficacy and side-effect profiles.


Asunto(s)
Antineoplásicos , Escherichia coli , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Bacterias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorouracilo/metabolismo , Fluorouracilo/farmacología , Humanos , Mamíferos , Redes y Vías Metabólicas , Ratones
4.
Cell Rep ; 37(5): 109930, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731631

RESUMEN

Mechanistic insights into the role of the human microbiome in the predisposition to and treatment of disease are limited by the lack of methods to precisely add or remove microbial strains or genes from complex communities. Here, we demonstrate that engineered bacteriophage M13 can be used to deliver DNA to Escherichia coli within the mouse gastrointestinal (GI) tract. Delivery of a programmable exogenous CRISPR-Cas9 system enables the strain-specific depletion of fluorescently marked isogenic strains during competitive colonization and genomic deletions that encompass the target gene in mice colonized with a single strain. Multiple mechanisms allow E. coli to escape targeting, including loss of the CRISPR array or even the entire CRISPR-Cas9 system. These results provide a robust and experimentally tractable platform for microbiome editing, a foundation for the refinement of this approach to increase targeting efficiency, and a proof of concept for the extension to other phage-bacterial pairs of interest.


Asunto(s)
Bacteriófago M13/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Deleción Cromosómica , Cromosomas Bacterianos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Escherichia coli/genética , Microbioma Gastrointestinal , Edición Génica , Animales , Proteína 9 Asociada a CRISPR/metabolismo , Escherichia coli/crecimiento & desarrollo , Heces/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica , Ratones Endogámicos BALB C , Ratones Transgénicos , Prueba de Estudio Conceptual
5.
Nature ; 595(7866): 272-277, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163067

RESUMEN

Diet is a major factor that shapes the gut microbiome1, but the consequences of diet-induced changes in the microbiome for host pathophysiology remain poorly understood. We conducted a randomized human intervention study using a very-low-calorie diet (NCT01105143). Although metabolic health was improved, severe calorie restriction led to a decrease in bacterial abundance and restructuring of the gut microbiome. Transplantation of post-diet microbiota to mice decreased their body weight and adiposity relative to mice that received pre-diet microbiota. Weight loss was associated with impaired nutrient absorption and enrichment in Clostridioides difficile, which was consistent with a decrease in bile acids and was sufficient to replicate metabolic phenotypes in mice in a toxin-dependent manner. These results emphasize the importance of diet-microbiome interactions in modulating host energy balance and the need to understand the role of diet in the interplay between pathogenic and beneficial symbionts.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Restricción Calórica , Dieta Reductora , Microbioma Gastrointestinal/fisiología , Adiposidad , Animales , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Toxinas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Peso Corporal , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/aislamiento & purificación , Clostridioides difficile/metabolismo , Metabolismo Energético , Humanos , Absorción Intestinal , Masculino , Ratones , Nutrientes/metabolismo , Simbiosis , Pérdida de Peso
6.
Acc Chem Res ; 54(9): 2065-2075, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33877820

RESUMEN

Rifamycin antibiotics include the WHO essential medicines rifampin, rifabutin, and rifapentine. These are semisynthetic derivatives of the natural product rifamycins, originally isolated from the soil bacterium Amycolatopsis rifamycinica. These antibiotics are primarily used to treat mycobacterial infections, including tuberculosis. Rifamycins act by binding to the ß-subunit of bacterial RNA polymerase, inhibiting transcription, which results in cell death. These antibiotics consist of a naphthalene core spanned by a polyketide ansa bridge. This structure presents a unique 3D configuration that engages RNA polymerase through a series of hydrogen bonds between hydroxyl groups linked to the naphthalene core and C21 and C23 of the ansa bridge. This binding occurs not in the enzyme active site where template-directed RNA synthesis occurs but instead in the RNA exit tunnel, thereby blocking productive formation of full-length RNA. In their clinical use to treat tuberculosis, resistance to rifamycin antibiotics arises principally from point mutations in RNA polymerase that decrease the antibiotic's affinity for the binding site in the RNA exit tunnel. In contrast, the rifamycin resistome of environmental mycobacteria and actinomycetes is much richer and diverse. In these organisms, rifamycin resistance includes many different enzymatic mechanisms that modify and alter the antibiotic directly, thereby inactivating it. These enzymes include ADP ribosyltransferases, glycosyltransferases, phosphotransferases, and monooxygenases.ADP ribosyltransferases catalyze group transfer of ADP ribose from the cofactor NAD+, which is more commonly deployed for metabolic redox reactions. ADP ribose is transferred to the hydroxyl linked to C23 of the antibiotic, thereby sterically blocking productive interaction with RNA polymerase. Like ADP ribosyltransferases, rifamycin glycosyl transferases also modify the hydroxyl of position C23 of rifamycins, transferring a glucose moiety from the donor molecule UDP-glucose. Unlike other antibiotic resistance kinases that transfer the γ-phosphate of ATP to inactivate antibiotics such as aminoglycosides or macrolides, rifamycin phosphotransferases are ATP-dependent dikinases. These enzymes transfer the ß-phosphate of ATP to the C21 hydroxyl of the rifamycin ansa bridge. The result is modification of a critical RNA polymerase binding group that blocks productive complex formation. On the other hand, rifamycin monooxygenases are FAD-dependent enzymes that hydroxylate the naphthoquinone core. The result of this modification is untethering of the ansa chain from the naphthyl moiety, disrupting the essential 3D shape necessary for productive RNA polymerase binding and inhibition that leads to cell death.All of these enzymes have homologues in bacterial metabolism that either are their direct precursors or share common ancestors to the resistance enzyme. The diversity of these resistance mechanisms, often redundant in individual bacterial isolates, speaks to the importance of protecting RNA polymerase from these compounds and validates this enzyme as a critical antibiotic target.


Asunto(s)
Antibacterianos/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Rifamicinas/metabolismo , Amycolatopsis/química , Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Rifamicinas/química , Rifamicinas/farmacología
7.
Proc Natl Acad Sci U S A ; 117(27): 16009-16018, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571913

RESUMEN

Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R-N=N-R') dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.


Asunto(s)
Bacterias/metabolismo , Excipientes/metabolismo , Aditivos Alimentarios/metabolismo , Alimentos , Microbioma Gastrointestinal/fisiología , Absorción Intestinal/fisiología , Transportadores de Anión Orgánico/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Antialérgicos/metabolismo , Antialérgicos/farmacocinética , Compuestos Azo , Bacterias/aislamiento & purificación , Excipientes/farmacocinética , Femenino , Aditivos Alimentarios/farmacocinética , Antagonistas de los Receptores Histamínicos H1 no Sedantes/metabolismo , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacocinética , Humanos , Absorción Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Terfenadina/análogos & derivados , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
8.
Nat Microbiol ; 5(1): 56-66, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31686027

RESUMEN

Plant-derived lignans, consumed daily by most individuals, are thought to protect against cancer and other diseases1; however, their bioactivity requires gut bacterial conversion to enterolignans2. Here, we dissect a four-species bacterial consortium sufficient for all five reactions in this pathway. A single enzyme (benzyl ether reductase, encoded by the gene ber) was sufficient for the first two biotransformations, variable between strains of Eggerthella lenta, critical for enterolignan production in gnotobiotic mice and unique to Coriobacteriia. Transcriptional profiling (RNA sequencing) independently identified ber and genomic loci upregulated by each of the remaining substrates. Despite their low abundance in gut microbiomes and restricted phylogenetic range, all of the identified genes were detectable in the distal gut microbiomes of most individuals living in northern California. Together, these results emphasize the importance of considering strain-level variations and bacterial co-occurrence to gain a mechanistic understanding of the bioactivation of plant secondary metabolites by the human gut microbiome.


Asunto(s)
Actinobacteria/genética , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Lignanos/metabolismo , Actinobacteria/clasificación , Actinobacteria/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biotransformación , Genoma Bacteriano/genética , Humanos , Lignanos/química , Redes y Vías Metabólicas/genética , Ratones , Consorcios Microbianos/genética , Filogenia , Especificidad de la Especie
9.
Nat Microbiol ; 4(12): 2052-2063, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570867

RESUMEN

Diet is a critical determinant of variation in gut microbial structure and function, outweighing even host genetics1-3. Numerous microbiome studies have compared diets with divergent ingredients1-5, but the everyday practice of cooking remains understudied. Here, we show that a plant diet served raw versus cooked reshapes the murine gut microbiome, with effects attributable to improvements in starch digestibility and degradation of plant-derived compounds. Shifts in the gut microbiota modulated host energy status, applied across multiple starch-rich plants, and were detectable in humans. Thus, diet-driven host-microbial interactions depend on the food as well as its form. Because cooking is human-specific, ubiquitous and ancient6,7, our results prompt the hypothesis that humans and our microbiomes co-evolved under unique cooking-related pressures.


Asunto(s)
Bacterias/clasificación , Culinaria , Dieta , Alimentos , Microbioma Gastrointestinal , Alimentos Crudos/análisis , Adulto , Animales , Heces/microbiología , Femenino , Variación Genética , Vida Libre de Gérmenes , Calor , Humanos , Masculino , Metabolómica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Transcriptoma , Adulto Joven
10.
Drug Metab Dispos ; 46(11): 1588-1595, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30111623

RESUMEN

With a paradigm shift occurring in health care toward personalized and precision medicine, understanding the numerous environmental factors that impact drug disposition is of paramount importance. The highly diverse and variant nature of the human microbiome is now recognized as a factor driving interindividual variation in therapeutic outcomes. The purpose of this review is to provide a practical guide on methodology that can be applied to study the effects of microbes on the absorption, distribution, metabolism, and excretion of drugs. We also highlight recent examples of how these methods have been successfully applied to help build the basis for researching the intersection of the microbiome and pharmacology. Although in vitro and in vivo preclinical models are highlighted, these methods are also relevant in late-phase drug development or even as a part of routine after-market surveillance. These approaches will aid in filling major knowledge gaps for both current and upcoming therapeutics with the long-term goal of achieving a new type of knowledge-based medicine that integrates data on the host and the microbiome.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Preparaciones Farmacéuticas/metabolismo , Animales , Descubrimiento de Drogas/métodos , Humanos , Inactivación Metabólica/fisiología
12.
Nat Commun ; 7: 11343, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27103605

RESUMEN

Rifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis. RPHs are previously uncharacterized dikinases that are widespread in environmental and pathogenic bacteria. These enzymes are members of a large unexplored group of bacterial enzymes with substrate affinities that have yet to be fully explored. Such an enzymatically complex mechanism of antibiotic resistance augments the spectrum of strategies used by bacteria to evade antimicrobial compounds.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/química , Listeria monocytogenes/enzimología , Fosfotransferasas/química , Rifampin/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biotransformación , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Listeria monocytogenes/clasificación , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rifampin/farmacología , Alineación de Secuencia
13.
Nat Rev Microbiol ; 14(5): 273-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26972811

RESUMEN

Although the importance of human genetic polymorphisms in therapeutic outcomes is well established, the role of our 'second genome' (the microbiome) has been largely overlooked. In this Review, we highlight recent studies that have shed light on the mechanisms that link the human gut microbiome to the efficacy and toxicity of xenobiotics, including drugs, dietary compounds and environmental toxins. Continued progress in this area could enable more precise tools for predicting patient responses and for the development of a new generation of therapeutics based on, or targeted at, the gut microbiome. Indeed, the admirable goal of precision medicine may require us to first understand the microbial pharmacists within.


Asunto(s)
Microbioma Gastrointestinal , Preparaciones Farmacéuticas/metabolismo , Xenobióticos/metabolismo , Animales , Dieta , Quimioterapia , Microbioma Gastrointestinal/fisiología , Humanos , Sistema Inmunológico/fisiología , Metaboloma , Metagenoma , Farmacogenética
14.
Proc Natl Acad Sci U S A ; 111(19): 7102-7, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24778229

RESUMEN

Many environmental bacteria are multidrug-resistant and represent a reservoir of ancient antibiotic resistance determinants, which have been linked to genes found in pathogens. Exploring the environmental antibiotic resistome, therefore, reveals the diversity and evolution of antibiotic resistance and also provides insight into the vulnerability of clinically used antibiotics. In this study, we describe the identification of a highly conserved regulatory motif, the rifampin (RIF) -associated element (RAE), which is found upstream of genes encoding RIF-inactivating enzymes from a diverse collection of actinomycetes. Using gene expression assays, we confirmed that the RAE is involved in RIF-responsive regulation. By using the RAE as a probe for new RIF-associated genes in several actinomycete genomes, we identified a heretofore unknown RIF resistance gene, RIF phosphotransferase (rph). The RPH enzyme is a RIF-inactivating phosphotransferase and represents a new protein family in antibiotic resistance. RPH orthologs are widespread and found in RIF-sensitive bacteria, including Bacillus cereus and the pathogen Listeria monocytogenes. Heterologous expression and in vitro enzyme assays with purified RPHs from diverse bacterial genera show that these enzymes are capable of conferring high-level resistance to a variety of clinically used rifamycin antibiotics. This work identifies a new antibiotic resistance protein family and reinforces the fact that the study of resistance in environmental organisms can serve to identify resistance elements with relevance to pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Listeria monocytogenes/enzimología , Fosfotransferasas/metabolismo , Rifamicinas/farmacología , Streptomycetaceae/enzimología , Actinobacteria/genética , Antibacterianos/química , Antibacterianos/farmacología , Bacillus cereus/enzimología , Bacillus cereus/genética , Bacillus cereus/patogenicidad , Proteínas Bacterianas/genética , Secuencia de Bases , Secuencia Conservada , Diseño de Fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidad , Datos de Secuencia Molecular , Fosfotransferasas/genética , Rifamicinas/química , Microbiología del Suelo , Streptomycetaceae/genética , Streptomycetaceae/patogenicidad
15.
Nat Biotechnol ; 31(10): 922-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24056948

RESUMEN

Microbially derived natural products are major sources of antibiotics and other medicines, but discovering new antibiotic scaffolds and increasing the chemical diversity of existing ones are formidable challenges. We have designed a screen to exploit the self-protection mechanism of antibiotic producers to enrich microbial libraries for producers of selected antibiotic scaffolds. Using resistance as a discriminating criterion we increased the discovery rate of producers of both glycopeptide and ansamycin antibacterial compounds by several orders of magnitude in comparison with historical hit rates. Applying a phylogeny-based screening filter for biosynthetic genes enabled the binning of producers of distinct scaffolds and resulted in the discovery of a glycopeptide antibacterial compound, pekiskomycin, with an unusual peptide scaffold. This strategy provides a means to readily sample the chemical diversity available in microbes and offers an efficient strategy for rapid discovery of microbial natural products and their associated biosynthetic enzymes.


Asunto(s)
Antibacterianos/biosíntesis , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Microbiana , Actinobacteria/química , Actinobacteria/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Vías Biosintéticas/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Glicopéptidos/biosíntesis , Glicopéptidos/química , Glicopéptidos/aislamiento & purificación , Glicopéptidos/farmacología , Filogenia , Reproducibilidad de los Resultados , Rifampin/química , Rifampin/farmacología , Vancomicina/química , Vancomicina/aislamiento & purificación , Vancomicina/farmacología
16.
Biochem J ; 454(2): 191-200, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23758273

RESUMEN

Activity of the aminoglycoside phosphotransferase APH(3')-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. We demonstrated previously that ePK (eukaryotic protein kinase) inhibitors could inhibit APH enzymes, owing to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. In addition, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. In the present study, we structurally and functionally characterize inhibition of APH(3')-Ia by three diverse chemical scaffolds, anthrapyrazolone, 4-anilinoquinazoline and PP (pyrazolopyrimidine), and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3')-Ia compared with ePKs. Using this observation, we identify PP derivatives that select against ePKs, attenuate APH(3')-Ia activity and rescue aminoglycoside antibiotic activity against a resistant Escherichia coli strain. The structures described in the present paper and the inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Kanamicina Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Acinetobacter baumannii/enzimología , Antracenos/química , Antracenos/metabolismo , Antracenos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Kanamicina/química , Kanamicina/metabolismo , Kanamicina/farmacología , Kanamicina Quinasa/química , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/química , Pirazoles/metabolismo , Pirazoles/farmacología , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacología , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
17.
Antimicrob Agents Chemother ; 57(7): 3348-57, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23650175

RESUMEN

The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.


Asunto(s)
Antiinfecciosos , Bases de Datos Genéticas , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Secuencia de Bases , Biología Computacional , Genoma Bacteriano , Internet , Interfaz Usuario-Computador
18.
Antimicrob Agents Chemother ; 56(10): 5061-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22802246

RESUMEN

Identifying and understanding the collection of all antibiotic resistance determinants presented in the global microbiota, the antibiotic resistome, provides insight into the evolution of antibiotic resistance and critical information for the development of future antimicrobials. The rifamycins are broad-spectrum antibiotics that target bacterial transcription by inhibition of RNA polymerase. Although mutational alteration of the drug target is the predominant mechanism of resistance to this family of antibiotics in the clinic, a number of diverse inactivation mechanisms have also been reported. In this report, we investigate a subset of environmental rifampin-resistant actinomycete isolates and identify a diverse collection of rifampin inactivation mechanisms. We describe a single isolate, WAC1438, capable of inactivating rifampin by glycosylation. A draft genome sequence of WAC1438 (most closely related to Streptomyces speibonae, according to a 16S rRNA gene comparison) was assembled, and the associated rifampin glycosyltransferase open reading frame, rgt1438, was identified. The role of rgt1438 in rifampin resistance was confirmed by its disruption in the bacterial chromosome, resulting in a loss of antibiotic inactivation and a 4-fold decrease in MIC. Interestingly, examination of the RNA polymerase ß-subunit sequence of WAC1438 suggests that it harbors a resistant target and thus possesses dual mechanisms of rifamycin resistance. Using an in vitro assay with purified enzyme, Rgt1438 could inactivate a variety of rifamycin antibiotics with comparable steady-state kinetics constants. Our results identify rgt1438 as a rifampin resistance determinant from WAC1438 capable of inactivating an assortment of rifamycins, adding a new element to the rifampin resistome.


Asunto(s)
Actinobacteria/enzimología , Actinobacteria/metabolismo , Glicosiltransferasas/metabolismo , Rifampin/metabolismo , Rifampin/farmacología , Actinobacteria/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano/genética , Glicosiltransferasas/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Streptomyces/efectos de los fármacos , Streptomyces/enzimología , Streptomyces/metabolismo
19.
Cell Mol Life Sci ; 67(3): 419-31, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19862477

RESUMEN

Resistance to tetracycline emerged soon after its discovery six decades ago. Extensive clinical and non-clinical uses of this class of antibiotic over the years have combined to select for a large number of resistant determinants, collectively termed the tetracycline resistome. In order to impart resistance, microbes use different molecular mechanisms including target protection, active efflux, and enzymatic degradation. A deeper understanding of the structure, mechanism, and regulation of the genes and proteins associated with tetracycline resistance will contribute to the development of tetracycline derivatives that overcome resistance. Newer generations of tetracyclines derived from engineering of biosynthetic genetic programs, semi-synthesis, and in particular recent developments in their chemical synthesis, together with a growing understanding of resistance, will serve to retain this class of antibiotic to combat pathogens.


Asunto(s)
Antibacterianos/química , Resistencia a la Tetraciclina , Tetraciclina/química , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conformación Molecular , Ribosomas/metabolismo , Tetraciclina/biosíntesis , Tetraciclina/metabolismo , Resistencia a la Tetraciclina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA