Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (202)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108328

RESUMEN

There is increasing awareness that cortical and cancellous bone differ in regulating and responding to pharmaceutical therapies, hormone therapies, and other treatments for age-related bone loss. Three-point bending is a common method used to assess the influence of a treatment on the mid-diaphysis region of long bones, which is rich in cortical bone. Uniaxial compression testing of mouse vertebrae, though capable of assessing bones rich in cancellous bone, is less commonly performed due to technical challenges. Even less commonly performed is the pairing of three-point bending and compression testing to determine how a treatment may influence a long bone's mid-diaphysis region and a vertebral centrum similarly or differently. Here, we describe two procedures to make compression testing of mouse lumbar vertebrae a less challenging method to perform in parallel with three-point bending: first, a procedure to convert a three-point bending machine into a compression testing machine, and second, an embedding method for preparing a mouse lumbar vertebra loading surface.


Asunto(s)
Osteoporosis , Farmacia , Animales , Ratones , Vértebras Lumbares , Terapia Conductista , Hueso Cortical
2.
Nutrients ; 14(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296906

RESUMEN

Numerous seed and seed extract diets have been investigated as a means of combating age-related bone loss, with many findings suggesting that the seeds/extracts confer positive effects on bone. Recently, there has been rising interest in the use of dietary hempseed in human and animal diets due to a perceived health benefit from the seed. Despite this, there has been a lack of research investigating the physiologic effects of dietary hempseed on bone. Previous studies have suggested that hempseed may enhance bone strength. However, a complete understanding of the effects of hempseed on bone mineralization, bone micro-architecture, and bone biomechanical properties is lacking. Using a young and developing female C57BL/6 mouse model, we aimed to fill these gaps in knowledge. From five to twenty-nine weeks of age, the mice were raised on either a control (0%), 50 g/kg (5%), or 150 g/kg (15%) hempseed diet (n = 8 per group). It was found that the diet did not influence the bone mineral density or micro-architecture of either the right femur or L5 vertebrae. Furthermore, it did not influence the stiffness, yield load, post-yield displacement, or work-to-fracture of the right femur. Interestingly, it reduced the maximum load of the right femur in the 15% hempseed group compared to the control group. This finding suggests that a hempseed-enriched diet provides no benefit to bone in young, developing C57BL/6 mice and may even reduce bone strength.


Asunto(s)
Densidad Ósea , Fémur , Humanos , Femenino , Ratones , Animales , Ratones Endogámicos C57BL , Fémur/fisiología , Dieta , Extractos Vegetales/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-35627377

RESUMEN

Optimizing peak bone mass is critical to healthy aging. Beyond the established roles of dietary minerals and protein on bone integrity, fatty acids and polyphenols modify bone structure. This study investigated the effect of a diet containing hempseeds (HS), which are rich in polyunsaturated fatty acids and polyphenols, on bone mineral density, bone cell populations and body composition. Groups (n = 8 each) of female C57BL/6 mice were fed one of three diets (15% HS by weight; 5% HS; 0% HS (control)) from age 5 to 30 weeks. In vivo whole-body composition and bone mineral density and content were measured every 4 weeks using dual-energy X-ray absorptiometry. Ex vivo humeri cell populations in the epiphyseal plate region were determined by sectioning the bone longitudinally, mounting the sections on slides and staining with tartrate-resistant acid phosphatase and alkaline phosphatase stain to identify osteoclasts and osteoblasts, respectively. Mixed models with repeated measures across experimental weeks showed that neither body weight nor body weight gain across weeks differed among groups yet mice fed the 15% HS diet consumed significantly more food and more kilocalories per g body weight gained than those fed the 5% HS and control diets (p < 0.0001). Across weeks, fat mass was significantly higher in the 5% HS versus the control group (p = 0.02). At the end point, whole-body bone mineral content was significantly higher in the control compared to the 5% HS group (p = 0.02). Humeri from both HS groups displayed significantly lower osteoblast densities compared to the control group (p < 0.0001). No relationship was seen between osteoblast density and body composition measurements. These data invite closer examination of bone cell activity and microarchitecture to determine the effect of habitual HS consumption on bone integrity.


Asunto(s)
Composición Corporal , Polifenoles , Absorciometría de Fotón , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Polifenoles/farmacología , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...