Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nat Metab ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693320

RESUMEN

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.

2.
Cell Metab ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701776

RESUMEN

Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.

3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732106

RESUMEN

Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1ß, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ejercicio Físico , Fibras Musculares Esqueléticas , Entrenamiento de Fuerza , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Masculino , Ejercicio Físico/fisiología , Persona de Mediana Edad , Femenino , Fibras Musculares Esqueléticas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/sangre , Citocinas/metabolismo , Citocinas/sangre , Interleucina-8/metabolismo , Interleucina-8/sangre , Interleucina-10/metabolismo , Interleucina-10/sangre , Anciano , Interleucina-15/metabolismo , Interleucina-15/sangre , Terapia por Ejercicio/métodos , Contracción Muscular , Músculo Esquelético/metabolismo , Mioquinas
4.
Artículo en Inglés | MEDLINE | ID: mdl-38605684

RESUMEN

BACKGROUND: The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age =76.4, 56.5% women, 85.9% non-Hispanic white) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95%CI]) for the likelihood of greater multimorbidity (four levels: 0 conditions, N=332; 1 condition, N=299; 2 conditions, N=98; or 3+ conditions, N=35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. RESULTS: Lower oxidative phosphorylation supported by fatty acids and/or complex-I and -II linked carbohydrates (e.g., Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR=1.32[1.13,1.54]) and separately with diabetes mellitus (OR=1.62[1.26,2.09]), depressive symptoms (OR=1.45[1.04,2.00]) and possibly chronic kidney disease (OR=1.57[0.98,2.52]) but not significantly with other conditions (e.g., cardiac arrhythmia, chronic obstructive pulmonary disease). CONCLUSIONS: Lower muscle mitochondrial bioenergetic capacities was associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and is more strongly related to some conditions than others.

5.
Am J Physiol Cell Physiol ; 326(4): C1248-C1261, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581663

RESUMEN

Adipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin. The three ADSC subpopulations in GF AT were characterized by strong cholesterol/fatty acid (FA) storage and proliferation signatures. The two ABD subpopulations, differentiated by higher expression of committed preadipocyte marker genes, were set apart by differential expression of extracellular matrix and ribosomal genes. The last population, identified in both depots, was similar to smooth muscle cells and when individually isolated and cultured in vitro they differentiated less than the other subpopulations. This work provides important insight into the use of ADSC as an in vitro model of adipogenesis and suggests that specific subpopulations of GF-ADSCs contribute to the more robust capacity for GF-AT to expand and grow compared with ABD-AT in women.NEW & NOTEWORTHY Identification of distinct subpopulations of adipose-derived stem cells (ADSCs) in upper body abdominal subcutaneous (ABD) and lower body gluteofemoral subcutaneous (GF) adipose tissue depots. In ABD-ADSCs, subpopulations are more committed to adipocyte lineage. GF-ADSC subpopulations are enriched for genes involved in lipids and cholesterol metabolism. Similar depot differences were found in stem cell population identified in freshly isolated stoma vascular fraction. The repertoire of ADSCs subpopulations was different in apple-shaped versus pear-shaped women.


Asunto(s)
Tejido Adiposo , Grasa Subcutánea , Humanos , Femenino , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Análisis de Secuencia de ARN , Colesterol/metabolismo
6.
Geroscience ; 46(3): 3419-3428, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38315316

RESUMEN

Biopsies of muscle and adipose tissue (AT) are useful tools to gain insights into the aging processes in these tissues. However, they are invasive procedures and their risk/benefit profile in older adults can be altered by sarcopenia, frailty, poor healing, and multimorbidity. Their success rates, safety, and tolerability in a geriatric population have not been reported in detail. Investigators in the Study of Muscle, Mobility, and Aging (SOMMA) performed biopsies of muscle and AT in older adults and prospectively collected data on biopsy success rates, safety, and tolerability. We report here the methods and outcomes of these two procedures. In total, 861 participants (aged 70-94) underwent percutaneous biopsies of the Vastus lateralis muscle with a Bergstrom needle. A subset (n = 241) also underwent percutaneous biopsies of the abdominal subcutaneous AT with the tumescent liposuction technique. Success rate was assessed by the percentage of biopsies yielding adequate specimens for analyses; tolerability by pain scores; and safety by frequency of adverse events. All data were prospectively collected. The overall muscle biopsy success rate was 97.1% and was modestly lower in women. The AT biopsy success rate was 95.9% and slightly lower in men. Minimal or no pain was reported in 68% of muscle biopsies and in 83% of AT biopsies. Adverse events occurred in 2.67% of muscle biopsies and 4.15% of AT biopsies. None was serious. In older adults, percutaneous muscle biopsies and abdominal subcutaneous AT biopsies have an excellent safety profile, often achieve adequate tissue yields for analyses, and are well tolerated.


Asunto(s)
Músculo Esquelético , Sarcopenia , Masculino , Humanos , Anciano , Femenino , Biopsia , Músculo Esquelético/patología , Envejecimiento , Sarcopenia/patología , Tejido Adiposo
7.
Cell Metab ; 36(4): 702-724, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38262420

RESUMEN

Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.


Asunto(s)
Ejercicio Físico , Proteómica , Humanos , Ejercicio Físico/fisiología , Terapia por Ejercicio , Ritmo Circadiano/fisiología , Sueño
8.
Aging (Albany NY) ; 16(1): 1-14, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189848

RESUMEN

Observational studies in preclinical models demonstrate age-related declines in circadian functions. We hypothesized that age would be associated with declines in function of cell-autonomous circadian clocks in human tissue. Accordingly, we cultured adipose progenitor cells (APCs) from previously collected white-adipose tissue biopsies from abdominal subcutaneous depots of young (Age: 23.4 ± 2.1 yrs) vs. older female participants (Age: 70.6 ± 5.9 yrs). Using an in vitro model, we compared rhythmic gene expression profiles of core clock components, as an indicator of circadian oscillatory function. We observed consistent circadian rhythmicity of core clock components in young and older-APCs. Expression analysis showed increased levels of some components in older-APCs (CLOCK, CRY1, NR1D1) vs. young. We also investigated resveratrol (RSV), a well-known longevity-enhancing effector, for its effects on rhythmic clock gene expression profiles. We found that RSV resulted in gained rhythmicity of some components (CLOCK and CRY), loss of rhythmicity in others (PER2, CRY2), and altered some rhythmic parameters (NR1D1 and NR1D2), consistent in young and older-APCs. The observation of detectable circadian rhythmicity retained in vitro suggests that the oscillatory function of the cell-autonomous core clock in APCs is preserved at this stage of the aging process. RSV impacts core clock gene expression in APCs, implicating its potential as a therapeutic agent for longevity by targeting the core clock.


Asunto(s)
Relojes Circadianos , Anciano , Femenino , Humanos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Resveratrol/farmacología , Células Madre , Transcriptoma , Adulto Joven , Adulto
9.
Exerc Sport Sci Rev ; 52(1): 3-12, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38126401

RESUMEN

Human skeletal muscle cell (HSkMC) models provide the opportunity to examine in vivo training-induced muscle-specific mitochondrial adaptations, additionally allowing for deeper interrogation into the effect of in vitro exercise models on myocellular mitochondrial quality and quantity. As such, this review will compare and contrast the effects of in vivo and in vitro models of exercise on mitochondrial adaptations in HSkMCs.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Mitocondrias , Fibras Musculares Esqueléticas/fisiología , Mitocondrias Musculares/metabolismo , Adaptación Fisiológica/fisiología
10.
medRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986822

RESUMEN

Objective: Examine the association of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. Methods: Cross-sectional data from 829 older adults ≥70 years was used. Total abdominal, subcutaneous, and visceral AT; and thigh muscle fat infiltration (MFI) was quantified by MRI. SM mitochondrial energetics were characterized using in vivo 31 P-MRS (ATP max ) and ex vivo high-resolution respirometry (maximal oxidative phosphorylation (OXPHOS)). ActivPal was used to measure PA (step count). Linear regression models adjusted for covariates were applied, with sequential adjustment for BMI and PA. Results: Independent of BMI, total abdominal (standardized (Std.) ß=-0.21; R 2 =0.09) and visceral AT (Std. ß=-0.16; R 2 =0.09) were associated with ATP max ( p <0.01), but not after further adjustment for PA (p≥0.05). Visceral AT (Std. ß=-0.16; R 2 =0.25) and thigh MFI (Std. ß=-0.11; R 2 =0.24) were negatively associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA ( p <0.05). Total abdominal AT (Std. ß=-0.19; R 2 =0.24) and visceral AT (Std. ß=-0.17; R 2 =0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p<0.05). Conclusions: Skeletal MFI and abdominal visceral, but not subcutaneous AT, are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.

12.
Am J Physiol Endocrinol Metab ; 325(4): E291-E302, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584609

RESUMEN

Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Mitocondrias Musculares/metabolismo
14.
iScience ; 26(3): 106189, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895649

RESUMEN

Peripheral neuropathy, which can include axonal degeneration and/or demyelination, impacts adipose tissues with obesity, diabetes, and aging. However, the presence of demyelinating neuropathy had not yet been explored in adipose. Both demyelinating neuropathies and axonopathies implicate Schwann cells (SCs), a glial support cell that myelinates axons and contributes to nerve regeneration after injury. We performed a comprehensive assessment of SCs and myelination patterns of subcutaneous white adipose tissue (scWAT) nerves, and changes across altered energy balance states. We found that mouse scWAT contains both myelinated and unmyelinated nerves and is populated by SCs, including SCs that were associated with synaptic vesicle-containing nerve terminals. BTBR ob/ob mice, a model of diabetic peripheral neuropathy, exhibited small fiber demyelinating neuropathy and alterations in SC marker gene expression in adipose that were similar to obese human adipose. These data indicate that adipose SCs regulate the plasticity of tissue nerves and become dysregulated in diabetes.

15.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778330

RESUMEN

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training. Multi-omic analyses of adipose tissue integrated with phenotypic measures identified sex-specific training responses including enrichment of mTOR signaling in females, while males displayed enhanced mitochondrial ribosome biogenesis and oxidative metabolism. Overall, this study reinforces our understanding that sex impacts scWAT biology and provides a rich resource to interrogate responses of scWAT to endurance training.

16.
STAR Protoc ; 4(1): 102054, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853719

RESUMEN

Automated single-cell dispensing is incompatible with white adipose tissue (WAT) due to lipid-laden adipocytes. Single-nuclei RNA-Seq permits transcriptional profiling of all cells from WAT. Human WAT faces unique technical challenges in isolating nuclei compared to rodent tissue due to greater extra-cellular matrix content and larger lipid droplets. In this protocol, we detail how to isolate nuclei from frozen subcutaneous human WAT for single-nuclei RNA-Seq. For complete information on the generation and use of this protocol, please refer to Whytock et al. (2022).1.


Asunto(s)
Tejido Adiposo Blanco , Grasa Subcutánea , Humanos , Núcleo Celular/genética , Adipocitos , RNA-Seq
17.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711881

RESUMEN

Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart and skeletal muscle, while we detected mild responses in the brain, lung, small intestine and testes. The colon response was characterized by non-linear dynamics that resulted in upregulation of mitochondrial function that was more prominent in females. Brown adipose and adrenal tissues were characterized by substantial downregulation of mitochondrial pathways. Training induced a previously unrecognized robust upregulation of mitochondrial protein abundance and acetylation in the liver, and a concomitant shift in lipid metabolism. The striated muscles demonstrated a highly coordinated response to increase oxidative capacity, with the majority of changes occurring in protein abundance and post-translational modifications. We identified exercise upregulated networks that are downregulated in human type 2 diabetes and liver cirrhosis. In both cases HSD17B10, a central dehydrogenase in multiple metabolic pathways and mitochondrial tRNA maturation, was the main hub. In summary, we provide a multi-omic, cross-tissue atlas of the mitochondrial response to training and identify candidates for prevention of disease-associated mitochondrial dysfunction.

18.
Geroscience ; 45(1): 569-589, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36242693

RESUMEN

Exercise is a cornerstone of preventive medicine and a promising strategy to intervene on the biology of aging. Variation in the response to exercise is a widely accepted concept that dates back to the 1980s with classic genetic studies identifying sequence variations as modifiers of the VO2max response to training. Since that time, the literature of exercise response variance has been populated with retrospective analyses of existing datasets that are limited by a lack of statistical power from technical error of the measurements and small sample sizes, as well as diffuse outcomes, very few of which have included older adults. Prospective studies that are appropriately designed to interrogate exercise response variation in key outcomes identified a priori and inclusive of individuals over the age of 70 are long overdue. Understanding the underlying intrinsic (e.g., genetics and epigenetics) and extrinsic (e.g., medication use, diet, chronic disease) factors that determine robust versus poor responses to various exercise factors will be used to improve exercise prescription to target the pillars of aging and optimize the clinical efficacy of exercise training in older adults. This review summarizes the proceedings of the NIA-sponsored workshop entitled, "Understanding Heterogeneity of Responses to, and Optimizing Clinical Efficacy of, Exercise Training in Older Adults" and highlights the importance and current state of exercise response variation research, particularly in older adults, prevailing challenges, and future directions.


Asunto(s)
Terapia por Ejercicio , Ejercicio Físico , Humanos , Anciano , Estudios Prospectivos , Estudios Retrospectivos , Ejercicio Físico/fisiología , Resultado del Tratamiento
19.
J Gerontol A Biol Sci Med Sci ; 78(8): 1367-1375, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462195

RESUMEN

BACKGROUND: Mitochondrial energetics are an important property of aging muscle, as generation of energy is pivotal to the execution of muscle contraction. However, its association with functional outcomes, including leg power and cardiorespiratory fitness, is largely understudied. METHODS: In the Study of Muscle, Mobility, and Aging, we collected vastus lateralis biopsies from older adults (n = 879, 70-94 years, 59.2% women). Maximal State 3 respiration (Max OXPHOS) was assessed in permeabilized fiber bundles by high-resolution respirometry. Capacity for maximal adenosine triphosphate production (ATPmax) was measured in vivo by 31P magnetic resonance spectroscopy. Leg extension power was measured with a Keiser press system, and VO2 peak was determined using a standardized cardiopulmonary exercise test. Gender-stratified multivariate linear regression models were adjusted for age, race, technician/site, adiposity, and physical activity with beta coefficients expressed per 1-SD increment in the independent variable. RESULTS: Max OXPHOS was associated with leg power for both women (ß = 0.12 Watts/kg, p < .001) and men (ß = 0.11 Watts/kg, p < .050). ATPmax was associated with leg power for men (ß = 0.09 Watts/kg, p < .05) but was not significant for women (ß = 0.03 Watts/kg, p = .11). Max OXPHOS and ATPmax were associated with VO2 peak in women and men (Max OXPHOS, ß women = 1.03 mL/kg/min, ß men = 1.32 mL/kg/min; ATPmax ß women = 0.87 mL/kg/min, ß men = 1.50 mL/kg/min; all p < .001). CONCLUSIONS: Higher muscle mitochondrial energetics measures were associated with both better cardiorespiratory fitness and greater leg power in older adults. Muscle mitochondrial energetics explained a greater degree of variance in VO2 peak compared to leg power.


Asunto(s)
Capacidad Cardiovascular , Masculino , Humanos , Femenino , Anciano , Capacidad Cardiovascular/fisiología , Pierna , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/fisiología , Consumo de Oxígeno/fisiología
20.
Nat Rev Endocrinol ; 19(5): 285-298, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36564490

RESUMEN

Intermuscular adipose tissue (IMAT) is a distinct adipose depot described in early reports as a 'fatty replacement' or 'muscle fat infiltration' that was linked to ageing and neuromuscular disease. Later studies quantifying IMAT with modern in vivo imaging methods (computed tomography and magnetic resonance imaging) revealed that IMAT is proportionately higher in men and women with type 2 diabetes mellitus and the metabolic syndrome than in people without these conditions and is associated with insulin resistance and poor physical function with ageing. In parallel, agricultural research has provided extensive insight into the role of IMAT and other muscle lipids in muscle (that is, meat) quality. In addition, studies using rodent models have shown that IMAT is a bona fide white adipose tissue depot capable of robust triglyceride storage and turnover. Insight into the importance of IMAT in human biology has been limited by the dearth of studies on its biological properties, that is, the quality of IMAT. However, in the past few years, investigations have begun to determine that IMAT has molecular and metabolic features that distinguish it from other adipose tissue depots. These studies will be critical to further decipher the role of IMAT in health and disease and to better understand its potential as a therapeutic target.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Femenino , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Adiposidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...