Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(9): e0203935, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30240423

RESUMEN

The spiny lobster, Panulirus argus, has two classes of chemosensilla representing "olfaction" and "distributed chemoreception," as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory receptor neurons (ORNs) that project into olfactory lobes organized into glomeruli in the brain. Distributed chemoreceptor sensilla are found on all body surfaces including the antennular lateral flagella (LF) and walking leg dactyls (dactyls), and are innervated by both chemoreceptor neurons (CRNs) and mechanoreceptor neurons that project into somatotopically organized neuropils. Here, we examined expression of three classes of chemosensory genes in transcriptomes of the LF (with ORNs and CRNs), dactyls (with only CRNs), and brain of P. argus: Ionotropic Receptors (IRs), which are related to ionotropic glutamate receptors and found in all protostomes including crustaceans; Gustatory Receptors (GRs), which are ionotropic receptors that are abundantly expressed in insects but more restricted in crustaceans; and Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several chemosensors in diverse animals. We identified 108 IRs, one GR, and 18 homologues representing all seven subfamilies of TRP channels. The number of IRs expressed in the LF is far greater than in dactyls, possibly reflecting the contribution of receptor proteins associated with the ORNs beyond those associated with CRNs. We found co-receptor IRs (IR8a, IR25a, IR76b, IR93a) and conserved IRs (IR21a, IR40a) in addition to the numerous divergent IRs in the LF, dactyl, and brain. Immunocytochemistry showed that IR25a is expressed in ORNs, CRNs, and a specific type of cell located in the brain near the olfactory lobes. While the function of IRs, TRP channels, and the GR was not explored, our results suggest that P. argus has an abundance of diverse putative chemoreceptor proteins that it may use in chemoreception.


Asunto(s)
Células Quimiorreceptoras/fisiología , Palinuridae/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/fisiología , Femenino , Perfilación de la Expresión Génica , Inmunohistoquímica , Masculino , Neuronas Receptoras Olfatorias/fisiología , Palinuridae/anatomía & histología , Palinuridae/genética , Filogenia , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/fisiología , Homología de Secuencia de Aminoácido , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...