Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(12): e0278833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36516174

RESUMEN

Monitoring shifts in vegetation composition over time is essential for tracking biodiversity changes and for designing ecosystem management strategies. In Australia, the Terrestrial Ecosystem Research Network (TERN) provides a continent-wide network of monitoring sites (AusPlots) that can be used to assess the shifts in vegetation composition and structure of Australian Major Vegetation Groups (MVGs). Here we use time-series site data to quantify the extent and rate of MVG shifts between repeat visits and to recommend the most appropriate sampling frequency for specific MVGs. The research area spans a ~1,500 km latitudinal gradient within south/central Australia from arid rangelands in the north to Mediterranean vegetation in the south. The standardized AusPlots protocol was employed to repeatedly survey 103 one-hectare plots, assessed between 2011 and 2019. Floristic and growth form dissimilarities between visits were calculated with distance metrics and then regressed against survey interval. Multivariate ordination was used to explore temporal floristic shifts. Rank-dominance curves were used to display variations in species' importance. Between repeated visits, sites exhibited high variability for all vegetation parameters and trajectories. However, several trends emerged: (a) Species composition moved away from baseline linearly with intervals between surveys. (b) The rate of species turnover was approximately double in communities that are herbaceous versus woody-dominated. (c) Species abundances and growth forms shift at different speeds. All floristic and structural metrics shifted between re-visits, with varying magnitude and speed, but herbaceous-dominated plots showed higher floristic dynamism. Although the expanse, logistics, and the short time between visits constrained our analysis and interpretation, our results suggest that shorter revisit intervals may be appropriate for herbaceous compared to woody systems to track change most efficiently.


Asunto(s)
Biodiversidad , Ecosistema , Australia , Australia del Sur
2.
PLoS One ; 17(8): e0271603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35994485

RESUMEN

Numerous studies have analysed the relationship between C4 plant cover and climate. However, few have examined how different C4 taxa vary in their response to climate, or how environmental factors alter C4:C3 abundance. Here we investigate (a) how proportional C4 plant cover and richness (relative to C3) responds to changes in climate and local environmental factors, and (b) if this response is consistent among families. Proportional cover and richness of C4 species were determined at 541 one-hectare plots across Australia for 14 families. C4 cover and richness of the most common and abundant families were regressed against climate and local parameters. C4 richness and cover in the monocot families Poaceae and Cyperaceae increased with latitude and were strongly positively correlated with January temperatures, however C4 Cyperaceae occupied a more restricted temperature range. Seasonal rainfall, soil pH, soil texture, and tree cover modified proportional C4 cover in both families. Eudicot families displayed considerable variation in C4 distribution patterns. Proportional C4 Euphorbiaceae richness and cover were negatively correlated with increased moisture availability (i.e. high rainfall and low aridity), indicating they were more common in dry environments. Proportional C4 Chenopodiaceae richness and cover were weakly correlated with climate and local environmental factors, including soil texture. However, the explanatory power of C4 Chenopodiaceae models were poor, suggesting none of the factors considered in this study strongly influenced Chenopodiaceae distribution. Proportional C4 richness and cover in Aizoaceae, Amaranthaceae, and Portulacaceae increased with latitude, suggesting C4 cover and richness in these families increased with temperature and summer rainfall, but sample size was insufficient for regression analysis. Results demonstrate the unique relationships between different C4 taxa and climate, and the significant modifying effects of environmental factors on C4 distribution. Our work also revealed C4 families will not exhibit similar responses to local perturbations or climate.


Asunto(s)
Chenopodiaceae , Plantas , Biodiversidad , Chenopodiaceae/fisiología , Clima , Ecosistema , Poaceae/fisiología , Suelo
3.
Ecol Evol ; 11(23): 17060-17070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938492

RESUMEN

In an era of unprecedented ecological upheaval, monitoring ecosystem change at large spatial scales and over long-time frames is an essential endeavor of effective environmental management and conservation. However, economic limitations often preclude revisiting entire monitoring networks at high frequency. We aimed here to develop a prioritization strategy for monitoring networks to select a subset of existing sites that meets the principles of complementarity and representativeness of the whole ecological reality, and maximizes ecological complementarity (species accumulation) and the spatial and environmental representativeness. We applied two well-known approaches for conservation design, the "minimum set" and the "maximal coverage" problems, using a suite of alpha and beta biodiversity metrics. We created a novel function for the R environment that performs biodiversity metric comparisons and site prioritization on a plot-by-plot basis. We tested our procedures using plot data provided by the Terrestrial Ecosystem Research Network (TERN) AusPlots, an Australian long-term monitoring network of 774 vegetation and soil monitoring plots. We selected 250 plots and 80% of the total species recorded as targets for the maximal coverage and minimum set problems, respectively. We compared the subsets selected by the different biodiversity metrics in terms of complementarity and spatial and environmental representativeness. We found that prioritization based on species turnover (i.e., iterative selection of the most dissimilar plot to a cumulative sample in terms of species replacement) maximized ecological complementarity and spatial representativeness, while also providing high environmental coverage. Species richness was an unreliable metric for spatial representation. Selection based on range-rarity-richness was balanced in terms of complementarity and representativeness, whereas its richness-corrected implementation failed to capture ecological and environmental variation. Prioritization based on species turnover is desirable to cover the maximum variability of the whole network. Synthesis and applications: Our results inform monitoring design and conservation priorities, which can benefit by considering the turnover component of beta diversity in addition to univariate metrics. Our tool is computationally efficient, free, and can be readily applied to any species versus sites dataset, facilitating rapid decision-making.

4.
Sci Data ; 8(1): 97, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795698

RESUMEN

The photosynthetic pathway of plants is a fundamental trait that influences terrestrial environments from the local to global level. The distribution of different photosynthetic pathways in Australia is expected to undergo a substantial shift due to climate change and rising atmospheric CO2; however, tracking change is hindered by a lack of data on the pathways of species, as well as their distribution and relative cover within plant communities. Here we present the photosynthetic pathways for 2428 species recorded across 541 plots surveyed by Australia's Terrestrial Ecosystem Research Network (TERN) between 2011 and 2017. This dataset was created to facilitate research exploring trends in vegetation change across Australia. Species were assigned a photosynthetic pathway using published literature and stable carbon isotope analysis of bulk tissue. The photosynthetic pathway of species can be extracted from the dataset individually, or used in conjunction with vegetation surveys to study the occurrence and abundance of pathways across the continent. This dataset will be updated as TERN's plot network expands and new information becomes available.


Asunto(s)
Fotosíntesis , Plantas/metabolismo , Atmósfera/química , Australia , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Cambio Climático , Ecosistema
5.
Biol Rev Camb Philos Soc ; 95(6): 1706-1719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32648358

RESUMEN

Ecosystem monitoring is fundamental to our understanding of how ecosystem change is impacting our natural resources and is vital for developing evidence-based policy and management. However, the different types of ecosystem monitoring, along with their recommended applications, are often poorly understood and contentious. Varying definitions and strict adherence to a specific monitoring type can inhibit effective ecosystem monitoring, leading to poor program development, implementation and outcomes. In an effort to develop a more consistent and clear understanding of ecosystem monitoring programs, we here review the main types of monitoring and recommend the widespread adoption of three classifications of monitoring, namely, targeted, surveillance and landscape monitoring. Landscape monitoring is conducted over large areas, provides spatial data, and enables questions relating to where and when ecosystem change is occurring to be addressed. Surveillance monitoring uses standardised field methods to inform on what is changing in our environments and the direction and magnitude of that change, whilst targeted monitoring is designed around testable hypotheses over defined areas and is the best approach for determining the causes of ecosystem change. The classification system is flexible and can incorporate different interests, objectives, targets and characteristics as well as different spatial scales and temporal frequencies, while also providing valuable structure and consistency across distinct ecosystem monitoring programs. To support our argument, we examine the ability of each monitoring type to inform on six key types of questions that are routinely posed for ecosystem monitoring programs, such as where and when change is occurring, what is the magnitude of change, and how can the change be managed? As we demonstrate, each type of ecosystem monitoring has its own strengths and weaknesses, which should be carefully considered relative to the desired results. Using this scheme, scientists and land managers can design programs best suited to their needs. Finally, we assert that for our most serious environmental challenges, it is essential that we include information from each of these monitoring scales to inform on all facets of ecosystem change, and this is best achieved through close collaboration between the scales. With a renewed understanding of the importance of each monitoring type, along with greater commitment to monitor cooperatively, we will be well placed to address some of our greatest environmental challenges.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Conservación de los Recursos Naturales
6.
New Phytol ; 228(1): 82-94, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32198931

RESUMEN

Leaf area (LA), mass per area (LMA), nitrogen per unit area (Narea ) and the leaf-internal to ambient CO2 ratio (χ) are fundamental traits for plant functional ecology and vegetation modelling. Here we aimed to assess how their variation, within and between species, tracks environmental gradients. Measurements were made on 705 species from 116 sites within a broad north-south transect from tropical to temperate Australia. Trait responses to environment were quantified using multiple regression; within- and between-species responses were compared using analysis of covariance and trait-gradient analysis. Leaf area, the leaf economics spectrum (indexed by LMA and Narea ) and χ (from stable carbon isotope ratios) varied almost independently among species. Across sites, however, χ and LA increased with mean growing-season temperature (mGDD0 ) and decreased with vapour pressure deficit (mVPD0 ) and soil pH. LMA and Narea showed the reverse pattern. Climate responses agreed with expectations based on optimality principles. Within-species variability contributed < 10% to geographical variation in LA but > 90% for χ, with LMA and Narea intermediate. These findings support the hypothesis that acclimation within individuals, adaptation within species and selection among species combine to create predictable relationships between traits and environment. However, the contribution of acclimation/adaptation vs species selection differs among traits.


Asunto(s)
Clima , Hojas de la Planta , Australia , Fenotipo , Suelo
7.
Science ; 366(6463)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31624184

RESUMEN

Our study quantified the global tree restoration potential and its associated carbon storage potential under existing climate conditions. We received multiple technical comments, both supporting and disputing our findings. We recognize that several issues raised in these comments are worthy of discussion. We therefore provide a detailed common answer where we show that our original estimations are accurate.


Asunto(s)
Clima , Árboles , Carbono , Cambio Climático
8.
PLoS One ; 13(9): e0202073, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30192858

RESUMEN

We describe and correlate environmental, floristic and structural vegetation traits of a large portion of Australian rangelands. We analysed 351 one hectare vegetation plots surveyed by Australia's Terrestrial Ecosystem Research Network (TERN) using the AusPlots Rangelands standardized method. The AusPlots Rangelands method involves surveying 1010 one meter-spaced point-intercepts (IPs) per plot. At each IP, species were scored, categorised by growth-form, converted to percentage cover as the input for the plot x species matrix. Vegetation structure is depicted by growth-form configuration and relative importance. The floristic and structural distance matrices were correlated with the Mantel test. Canonical correspondence analysis (CCA) related floristic composition to environmental variables sourced from WorldClim, the Atlas of Living Australia and TERN's Soil and Landscape Grid. Differences between clusters were tested with ANOVA while principal component analysis (PCA) ordered the plots within the environmental space. Our plot x species matrix required segmentation due to sparsity and high ß-diversity. Based on the ordination of plots latitude within environmental space, the matrix was segmented into three "superclusters": the winter rain and temperate Mediterranean, the monsoonal rain savannas and the arid deserts. Further classification, with the UPGMA linkage method, generated two, four and five clusters, respectively. All groupings are described by species richness, diversity indices and growth form conformation. Several floristic disjunctions were apparent and their possible causes are discussed. For all superclusters, the correspondence between the floristic and the structural or growth form matrices was statistically significant. CCA ordination clearly demarcated all groupings. Aridity, rainfall, temperature, seasonality, soil nitrogen and pH are significant correlates to the ordination of superclusters and clusters. At present, our results are influenced by incomplete sampling. As more sites are surveyed, this pioneer analysis will be updated and refined providing tools for the effective management of Australian rangelands.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Ambiente , Magnoliopsida/fisiología , Análisis de Varianza , Australia , Clima , Geografía , Pradera , Magnoliopsida/clasificación , Análisis de Componente Principal , Lluvia , Estaciones del Año , Suelo/química , Especificidad de la Especie
9.
Proc Natl Acad Sci U S A ; 114(44): 11615-11620, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078342

RESUMEN

Although bacterial bioactive metabolites have been one of the most prolific sources of lead structures for the development of small-molecule therapeutics, very little is known about the environmental factors associated with changes in secondary metabolism across natural environments. Large-scale sequencing of environmental microbiomes has the potential to shed light on the richness of bacterial biosynthetic diversity hidden in the environment, how it varies from one environment to the next, and what environmental factors correlate with changes in biosynthetic diversity. In this study, the sequencing of PCR amplicons generated using primers targeting either ketosynthase domains from polyketide biosynthesis or adenylation domains from nonribosomal peptide biosynthesis was used to assess biosynthetic domain composition and richness in soils collected across the Australian continent. Using environmental variables collected at each soil site, we looked for environmental factors that correlated with either high overall domain richness or changes in the domain composition. Among the environmental variables we measured, changes in biosynthetic domain composition correlate most closely with changes in latitude and to a lesser extent changes in pH. Although it is unclear at this time the exact mix of factors that may drive the relationship between biosynthetic domain composition and latitude, from a practical perspective the identification of a latitudinal basis for differences in soil metagenome biosynthetic domain compositions should help guide future natural product discovery efforts.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Productos Biológicos/metabolismo , Microbiología del Suelo , Australia , Biodiversidad , Productos Biológicos/química , Variación Genética , Metagenoma , Estructura Molecular
11.
Science ; 356(6338): 635-638, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28495750

RESUMEN

Dryland biomes cover two-fifths of Earth's land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high temporal resolution, which are available through the Google Earth platform. We show that in 2015, 1327 million hectares of drylands had more than 10% tree-cover, and 1079 million hectares comprised forest. Our estimate is 40 to 47% higher than previous estimates, corresponding to 467 million hectares of forest that have never been reported before. This increases current estimates of global forest cover by at least 9%.


Asunto(s)
Bosques , Conservación de los Recursos Naturales , Planeta Tierra , Ecosistema , Mapeo Geográfico
12.
PLoS One ; 12(1): e0170137, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28095496

RESUMEN

Australian rangelands ecosystems cover 81% of the continent but are understudied and continental-scale research has been limited in part by a lack of precise data that are standardised between jurisdictions. We present a new dataset from AusPlots Rangelands that enables integrative rangelands analysis due to its geographic scope and standardised methodology. The method provides data on vegetation and soils, enabling comparison of a suite of metrics including fractional vegetation cover, basal area, and species richness, diversity, and composition. Cover estimates are robust and repeatable, allowing comparisons among environments and detection of modest change. The 442 field plots presented here span a rainfall gradient of 129-1437 mm Mean annual precipitation with varying seasonality. Vegetation measurements include vouchered vascular plant species, growth form, basal area, height, cover and substrate type from 1010 point intercepts as well as systematically recorded absences, which are useful for predictive modelling and validation of remote sensing applications. Leaf and soil samples are sampled for downstream chemical and genomic analysis. We overview the sampling of vegetation parameters and environments, applying the data to the question of how species abundance distributions (SADs) vary over climatic gradients, a key question for the influence of environmental change on ecosystem processes. We found linear relationships between SAD shape and rainfall within grassland and shrubland communities, indicating more uneven abundance in deserts and suggesting relative abundance may shift as a consequence of climate change, resulting in altered diversity and ecosystem function. The standardised data of AusPlots enables such analyses at large spatial scales, and the testing of predictions through time with longitudinal sampling. In future, the AusPlots field program will be directed towards improving coverage of space, under-represented environments, vegetation types and fauna and, increasingly, re-sampling of established plots. Providing up-to-date data access methods to enhance re-use is also a priority.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/normas , Pradera , Lluvia , Australia , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...