Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Immunol ; 10: 466, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930901

RESUMEN

Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7-/- mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects of TLR7 in impeding VSV replication in the dLN, TLR7-/- mice present elevated viral load in the brain and spinal cord highlighting their susceptibility to VSV neuroinvasion. By generating novel TLR7 floxed mice, we interrogate the impact of cell-specific TLR7 function in anti-viral immunity after VSV skin infection. Our data suggests that TLR7 signaling in SCS macrophages supports VSV replication in these cells, increasing LN infection and may account for the delayed onset of VSV-induced neurovirulence observed in TLR7-/- mice. Overall, we identify TLR7 as a novel and essential host factor that critically controls anti-viral immunity to VSV. Furthermore, the novel mouse model generated in our study will be of valuable importance to shed light on cell-intrinsic TLR7 biology in future studies.


Asunto(s)
Macrófagos/inmunología , Glicoproteínas de Membrana/inmunología , Infecciones por Rhabdoviridae/inmunología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Receptor Toll-Like 7/inmunología , Vesiculovirus/fisiología , Replicación Viral/inmunología , Animales , Encéfalo/inmunología , Encéfalo/virología , Macrófagos/virología , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Infecciones por Rhabdoviridae/genética , Infecciones por Rhabdoviridae/patología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Médula Espinal/inmunología , Médula Espinal/virología , Receptor Toll-Like 7/genética , Replicación Viral/genética
3.
PLoS Pathog ; 15(4): e1007657, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998782

RESUMEN

Helminths are highly prevalent metazoan parasites that infect over a billion of the world's population. Hosts have evolved numerous mechanisms to drive the expulsion of these parasites via Th2-driven immunity, but these responses must be tightly controlled to prevent equally devastating immunopathology. However, mechanisms that regulate this balance are still unclear. Here we show that the vigorous Th2 immune response driven by the small intestinal helminth Trichinella spiralis, is associated with increased TGFß signalling responses in CD4+ T-cells. Mechanistically, enhanced TGFß signalling in CD4+ T-cells is dependent on dendritic cell-mediated TGFß activation which requires expression of the integrin αvß8. Importantly, mice lacking integrin αvß8 on DCs had a delayed ability to expel a T. spiralis infection, indicating an important functional role for integrin αvß8-mediated TGFß activation in promoting parasite expulsion. In addition to maintaining regulatory T-cell responses, the CD4+ T-cell signalling of this pleiotropic cytokine induces a Th17 response which is crucial in promoting the intestinal muscle hypercontractility that drives worm expulsion. Collectively, these results provide novel insights into intestinal helminth expulsion beyond that of classical Th2 driven immunity, and highlight the importance of IL-17 in intestinal contraction which may aid therapeutics to numerous diseases of the intestine.


Asunto(s)
Células Dendríticas/inmunología , Intestino Delgado/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Trichinella spiralis/inmunología , Triquinelosis/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/parasitología , Intestino Delgado/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Th17/parasitología , Triquinelosis/parasitología
4.
JCI Insight ; 3(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089715

RESUMEN

Adeno-associated viral vector-mediated (AAV-mediated) expression of allogeneic major histocompatibility complex class I (MHC class I) in recipient liver induces donor-specific tolerance in mouse skin transplant models in which a class I allele (H-2Kb or H-2Kd) is mismatched between donor and recipient. Tolerance can be induced in mice primed by prior rejection of a donor-strain skin graft, as well as in naive recipients. Allogeneic MHC class I may be recognized by recipient T cells as an intact molecule (direct recognition) or may be processed and presented as an allogeneic peptide in the context of self-MHC (indirect recognition). The relative contributions of direct and indirect allorecognition to tolerance induction in this setting are unknown. Using hepatocyte-specific AAV vectors encoding WT allogeneic MHC class I molecules, or class I molecules containing a point mutation (D227K) that impedes direct recognition of intact allogeneic MHC class I by CD8+ T cells without hampering the presentation of processed peptides derived from allogeneic MHC class I, we show here that tolerance induction depends upon recognition of intact MHC class I. Indirect recognition alone yielded a modest prolongation of subsequent skin graft survival, attributable to the generation of CD4+ Tregs, but it was not sufficient to induce tolerance.


Asunto(s)
Rechazo de Injerto/inmunología , Hepatocitos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Tolerancia Inmunológica , Isoantígenos/inmunología , Aloinjertos/citología , Aloinjertos/inmunología , Aloinjertos/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Dependovirus/genética , Modelos Animales de Enfermedad , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Vectores Genéticos/genética , Supervivencia de Injerto/inmunología , Hepatocitos/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Isoantígenos/genética , Isoantígenos/metabolismo , Hígado/citología , Hígado/inmunología , Hígado/metabolismo , Trasplante de Hígado/efectos adversos , Masculino , Ratones , Ratones Transgénicos , Mutación Puntual , Linfocitos T Reguladores/inmunología , Transducción Genética
5.
Front Immunol ; 9: 471, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662482

RESUMEN

Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.


Asunto(s)
Antígenos Bacterianos/inmunología , Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Celular , Lectinas Tipo C/inmunología , Mycobacterium tuberculosis/inmunología , Receptores de Superficie Celular/inmunología , Células TH1/inmunología , Vacunas contra la Tuberculosis/inmunología , Animales , Citocinas/inmunología , Células Dendríticas/patología , Humanos , Ratones , Células TH1/patología , Tuberculosis/inmunología , Tuberculosis/prevención & control
6.
Front Immunol ; 9: 495, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29675017

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.


Asunto(s)
Células Dendríticas/inmunología , Ácidos Grasos/inmunología , Inmunidad Innata , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Células TH1/inmunología , Tuberculosis/inmunología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/inmunología , Animales , Células Dendríticas/microbiología , Células Dendríticas/patología , Ácidos Grasos/genética , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/genética , Células TH1/microbiología , Células TH1/patología , Tuberculosis/genética , Tuberculosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...