Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Cancer Discov ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630892

RESUMEN

Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL), are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin-ligase (CRL) with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiological KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the BTB domain of KLHL6 disrupted its localization and heterodimerization, and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL.

2.
Blood Adv ; 7(23): 7216-7230, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37695745

RESUMEN

Tumor-infiltrating regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. Despite extensive studies, the prognostic impact of tumor-infiltrating Tregs in B-cell non-Hodgkin lymphomas (B-NHLs) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotypes and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs. Here, we applied single-cell RNA sequencing and T-cell receptor sequencing combined with high-dimensional cytometry to decipher the heterogeneity of intratumoral Tregs in diffuse large B-cell lymphoma and follicular lymphoma (FL), compared with that in nonmalignant tonsillar tissue. We identified 3 distinct transcriptional states of Tregs: resting, activated, and unconventional LAG3+FOXP3- Tregs. Activated Tregs were enriched in B-NHL tumors, coexpressed several checkpoint receptors, and had stronger immunosuppressive activity compared with resting Tregs. In FL, activated Tregs were found in closer proximity to CD4+ and CD8+ T cells than other cell types. Furthermore, we used a computational approach to develop unique gene signature matrices, which were used to enumerate each Treg subset in cohorts with bulk gene expression data. In 2 independent FL cohorts, activated Tregs was the major subset, and high abundance was associated with adverse outcome. This study demonstrates that Tregs infiltrating B-NHL tumors are transcriptionally and functionally diverse. Highly immunosuppressive activated Tregs were enriched in tumor tissue but absent in the peripheral blood. Our data suggest that a deeper understanding of Treg heterogeneity in B-NHL could open new paths for rational drug design, facilitating selective targeting to improve antitumor immunity.


Asunto(s)
Linfoma Folicular , Linfoma de Células B Grandes Difuso , Humanos , Linfocitos T Reguladores , Linfocitos T CD8-positivos , Pronóstico , Inmunosupresores , Microambiente Tumoral
3.
Cancer Res ; 81(12): 3160-3161, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34224376

RESUMEN

The role of fusion genes and cancer driver genes in malignant transformation has traditionally been explored using transgenic or chimeric mouse models. It has been challenging to develop models that fully resemble the characteristics and morphology of human cancers. This applies to anaplastic large-cell lymphoma (ALCL), a malignancy classified as a peripheral T-cell lymphoma. It is still unclear at which stage of T-cell development ALCL can occur, as well as the early molecular events required for malignant transformation. In this issue of Cancer Research, Pawlicki and colleagues introduced the NPM-ALK fusion gene and mutant variants into primary T cells from healthy donors. By monitoring transduced T-cell clones over time, they demonstrated that transformed T cells undergo a progressive loss of T-cell identity accompanied with upregulation of epithelial-to-mesenchymal transition program and reemergence of an immature, thymic profile. Introduction of NPM-ALK was, however, not sufficient to convert healthy T cells to malignant clones, as this process required activation of T-cell receptor signaling. The study sets the stage for modeling early genetic changes in human tumors.See related article by Pawlicki et al., p. 3241.


Asunto(s)
Linfoma Anaplásico de Células Grandes , Proteínas Tirosina Quinasas , Quinasa de Linfoma Anaplásico , Animales , Ratones , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Linfocitos T/metabolismo
4.
Mol Cancer Ther ; 19(11): 2371-2381, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32847969

RESUMEN

Direct cell death induction, in addition to immune-effector cell-mediated mechanisms, is one of the key mechanisms of action of anti-CD20 antibodies, and yet the signaling pathways implicated remain poorly investigated. Here we show that the transcription factor EGR-1 is rapidly induced by anti-CD20 antibodies and is a key mediator for CD20-induced cell death. EGR-1 induction results from an increased calcium influx induced by anti-CD20 antibodies. We show that both rituximab and obinutuzumab induce calcium influx, albeit through different mechanisms, and this influx is crucial for cell death induction. Inhibition of the calcium flux with calcium channel blockers (CCB) abolished EGR-1 induction and impaired the efficacy of anti-CD20 antibodies in preclinical in vitro and in vivo models. Finally, we investigated the impact of CCBs in patients treated with anti-CD20 antibodies included in the clinical trials GOYA and REMARC, and found that patients simultaneously receiving CCBs and anti-CD20 therapy have a shorter progression-free survival and overall survival. These results reveal EGR-1 as a key mediator of the direct cytotoxic activity of anti-CD20 antibodies and provide a rationale to evaluate EGR-1 expression as a new biomarker to predict response to anti-CD20 treatment. In addition, our findings show that calcium influx is required for anti-CD20-mediated tumor cell death and suggest that simultaneous administration of calcium channel blocking agents could be deleterious in patients receiving anti-CD20-based immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Antagonismo de Drogas , Proteína 1 de la Respuesta de Crecimiento Precoz/antagonistas & inhibidores , Rituximab/farmacología , Animales , Antígenos CD20 , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/mortalidad , Ratones , Células 3T3 NIH , Pronóstico , Transducción de Señal , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767055

RESUMEN

Tubulin is the target for many small-molecule natural compounds, which alter microtubules dynamics, and lead to cell cycle arrest and apoptosis. One of these compounds is colchicine, a plant alkaloid produced by Colchicum autumnale. While C. autumnale produces a potent cytotoxin, colchicine, and expresses its target protein, it is immune to colchicine's cytotoxic action and the mechanism of this resistance is hitherto unknown. In the present paper, the molecular mechanisms responsible for colchicine resistance in C. autumnale are investigated and compared to human tubulin. To this end, homology models for C. autumnale α-ß tubulin heterodimer are created and molecular dynamics (MD) simulations together with molecular mechanics Poisson-Boltzmann calculations (MM/PBSA) are performed to determine colchicine's binding affinity for tubulin. Using our molecular approach, it is shown that the colchicine-binding site in C. autumnale tubulin contains a small number of amino acid substitutions compared to human tubulin. However, these substitutions induce significant reduction in the binding affinity for tubulin, and subsequently fewer conformational changes in its structure result. It is suggested that such small conformational changes are insufficient to profoundly disrupt microtubule dynamics, which explains the high resistance to colchicine by C. autumnale.


Asunto(s)
Colchicina/química , Colchicum/química , Modelos Moleculares , Tubulina (Proteína)/química , Colchicina/metabolismo , Colchicum/genética , Colchicum/metabolismo , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
6.
Theor Biol Med Model ; 11: 52, 2014 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-25542608

RESUMEN

A variety of topics are reviewed in the area of mathematical and computational modeling in biology, covering the range of scales from populations of organisms to electrons in atoms. The use of maximum entropy as an inference tool in the fields of biology and drug discovery is discussed. Mathematical and computational methods and models in the areas of epidemiology, cell physiology and cancer are surveyed. The technique of molecular dynamics is covered, with special attention to force fields for protein simulations and methods for the calculation of solvation free energies. The utility of quantum mechanical methods in biophysical and biochemical modeling is explored. The field of computational enzymology is examined.


Asunto(s)
Simulación por Computador , Entropía , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...