Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(1): 209-214, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38156794

RESUMEN

Despite the real-time, nonionizing, and cost-effective nature of ultrasound imaging, there is a dearth of methods to visualize two or more populations of contrast agents simultaneously─a technique known as multiplex imaging. Here, we present a new approach to multiplex ultrasound imaging using perfluorocarbon (PFC) nanodroplets. The nanodroplets, which undergo a liquid-to-gas phase transition in response to an acoustic trigger, act as activatable contrast agents. This work characterized the dynamic responses of two PFC nanodroplets with boiling points of 28 and 56 °C. These characteristic responses were then used to demonstrate that the relative concentrations of the two populations of PFC nanodroplets could be accurately measured in the same imaging volume within an average error of 1.1%. Overall, the findings indicate the potential of this approach for multiplex ultrasound imaging, allowing for the simultaneous visualization of multiple molecular targets simultaneously.


Asunto(s)
Medios de Contraste , Fluorocarburos , Ultrasonografía/métodos , Transición de Fase , Acústica
2.
Ultrasonics ; 133: 107056, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269682

RESUMEN

Phase-changing nanodroplets are nanometric sized constructs that can be vaporized via external stimuli, such as focused ultrasound, to generate gaseous bubbles that are visible in ultrasound. Their activation can also be leveraged to release their payload, creating a method for ultrasound-modulated localized drug delivery. Here, we develop a perfluoropentane core nanodroplet that can simultaneously load paclitaxel and doxorubicin, and release them in response to an acoustic trigger. A double emulsion method is used to incorporate the two drugs with different physio-chemical properties, which allows for a combinatorial chemotherapy regimen to be used. Their loading, release, and biological effects on a triple negative breast cancer mouse model are investigated. We show that activation enhances the drug-delivery effect and delays the tumor growth rate in vivo. Overall, the phase-changing nanodroplets are a useful platform to allow on-demand delivery of combinations of drugs.


Asunto(s)
Fluorocarburos , Nanopartículas , Animales , Ratones , Preparaciones Farmacéuticas , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/química , Quimioterapia Combinada
3.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808089

RESUMEN

Perfluorocarbon nanodroplets offer an alternative to gaseous microbubbles as contrast agents for ultrasound imaging. They can be acoustically activated to induce a liquid-to-gas phase transition and provide contrast in ultrasound images. In this study, we demonstrate a new strategy to synthesize antibody-conjugated perfluorohexane nanodroplet (PFHnD-Ab) ultrasound contrast agents that target cells overexpressing the epidermal growth factor receptor (EGFR). The perfluorohexane nanodroplets (PFHnD) containing a lipophilic DiD fluorescent dye were synthesized using a phospholipid shell. Antibodies were conjugated to the surface through a hydrazide-aldehyde reaction. Cellular binding was confirmed using fluorescence microscopy; the DiD fluorescence signal of the PFHnD-Ab was 5.63× and 6× greater than the fluorescence signal in the case of non-targeted PFHnDs and the EGFR blocking control, respectively. Cells were imaged in tissue-mimicking phantoms using a custom ultrasound imaging setup consisting of a high-intensity focused ultrasound transducer and linear array imaging transducer. Cells with conjugated PFHnD-Abs exhibited a significantly higher (p < 0.001) increase in ultrasound amplitude compared to cells with non-targeted PFHnDs and cells exposed to free antibody before the addition of PFHnD-Abs. The developed nanodroplets show potential to augment the use of ultrasound in molecular imaging cancer diagnostics.

4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806326

RESUMEN

The sensitivity of fluorescence imaging is limited by the high optical scattering of tissue. One approach to improve sensitivity to small signals is to use a contrast agent with a signal that can be externally modulated. In this work, we present a new phase-changing perfluorocarbon nanodroplet contrast agent loaded with DiR dye. The nanodroplets undergo a liquid-to-gas phase transition when exposed to an externally applied laser pulse. This results in the unquenching of the encapsulated dye, thus increasing the fluorescent signal, a phenomenon that can be characterized by an ON/OFF ratio between the fluorescence of activated and nonactivated nanodroplets, respectively. We investigate and optimize the quenching/unquenching of DiR upon nanodroplets' vaporization in suspension, tissue-mimicking phantoms and a subcutaneous injection mouse model. We also demonstrate that the vaporized nanodroplets produce ultrasound contrast, enabling multimodal imaging. This work shows that these nanodroplets could be applied to imaging applications where high sensitivity is required.


Asunto(s)
Fluorocarburos , Animales , Medios de Contraste , Ratones , Imagen Multimodal , Ultrasonografía/métodos , Volatilización
5.
iScience ; 24(11): 103252, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755092

RESUMEN

It is well established that the early malignant tumor invades surrounding extracellular matrix (ECM) in a manner that depends upon material properties of constituent cells, surrounding ECM, and their interactions. Recent studies have established the capacity of the invading tumor spheroids to evolve into coexistent solid-like, fluid-like, and gas-like phases. Using breast cancer cell lines invading into engineered ECM, here we show that the spheroid interior develops spatial and temporal heterogeneities in material phase which, depending upon cell type and matrix density, ultimately result in a variety of phase separation patterns at the invasive front. Using a computational approach, we further show that these patterns are captured by a novel jamming phase diagram. We suggest that non-equilibrium phase separation based upon jamming and unjamming transitions may provide a unifying physical picture to describe cellular migratory dynamics within, and invasion from, a tumor.

6.
Nanomaterials (Basel) ; 10(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979174

RESUMEN

This study presents the design of novel composites nanogels, based on poly(ethylene glycol) diacrylate and natural zeolite particles, that are able to act as materials with controlled drug delivery properties. Natural zeolite‒nanogels composite, with varying zeolite contents, were obtained by an inverse mini-emulsion technique and loaded with 5-fluorouracil, a widely used chemotherapeutic drug. Herein, the possibility of adjusting final properties by means of modifying the preparation conditions was investigated. The prepared composite nanogels are characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). In light of this tunable drug-loading capability, swelling behaviour, and cytotoxicity, these composite nanogels could be highly attractive as drug reservoirs.

7.
ACS Appl Nano Mater ; 3(3): 2636-2646, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35873656

RESUMEN

Barium titanate nanoparticles (BTNPs) are gaining popularity in biomedical research because of their piezoelectricity, nonlinear optical properties, and high biocompatibility. However, the potential of BTNPs is limited by the ability to create stable nanoparticle dispersions in water and physiological media. In this work, we report a method of surface modification of BTNPs based on surface hydroxylation followed by covalent attachment of hydrophilic poly(ethylene glycol) (PEG) polymers. This polymer coating allows for additional modifications such as fluorescent labeling, surface charge tuning, or directional conjugation of IgG antibodies. We demonstrate the conjugation of anti-EGFR antibodies to the BTNP surface and show efficient molecular targeting of the nanoparticles to A431 cells. Overall, the reported modifications aim to expand the BTNP applications in molecular imaging, cancer therapy, or noninvasive neurostimulation.

8.
ACS Biomater Sci Eng ; 5(8): 3766-3787, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32953985

RESUMEN

Cell migration is essential for regulating many biological processes in physiological or pathological conditions, including embryonic development and cancer invasion. In vitro and in silico studies suggest that collective cell migration is associated with some biomechanical particularities such as restructuring of extracellular matrix (ECM), stress and force distribution profiles, and reorganization of the cytoskeleton. Therefore, the phenomenon could be understood by an in-depth study of cells' behavior determinants, including but not limited to mechanical cues from the environment and from fellow "travelers". This review article aims to cover the recent development of experimental and computational methods for studying the biomechanics of collective cell migration during cancer progression and invasion. We also summarized the tested hypotheses regarding the mechanism underlying collective cell migration enabled by these methods. Together, the paper enables a broad overview on the methods and tools currently available to unravel the biophysical mechanisms pertinent to cell collective migration as well as providing perspectives on future development toward eventually deciphering the key mechanisms behind the most lethal feature of cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...