Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Microbiol ; 14: 1149145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234530

RESUMEN

Acanthamoeba species, Naegleria fowleri, and Balamuthia mandrillaris are opportunistic pathogens that cause a range of brain, skin, eye, and disseminated diseases in humans and animals. These pathogenic free-living amoebae (pFLA) are commonly misdiagnosed and have sub-optimal treatment regimens which contribute to the extremely high mortality rates (>90%) when they infect the central nervous system. To address the unmet medical need for effective therapeutics, we screened kinase inhibitor chemotypes against three pFLA using phenotypic drug assays involving CellTiter-Glo 2.0. Herein, we report the activity of the compounds against the trophozoite stage of each of the three amoebae, ranging from nanomolar to low micromolar potency. The most potent compounds that were identified from this screening effort were: 2d (A. castellanii EC50: 0.92 ± 0.3 µM; and N. fowleri EC50: 0.43 ± 0.13 µM), 1c and 2b (N. fowleri EC50s: <0.63 µM, and 0.3 ± 0.21 µM), and 4b and 7b (B. mandrillaris EC50s: 1.0 ± 0.12 µM, and 1.4 ± 0.17 µM, respectively). With several of these pharmacophores already possessing blood-brain barrier (BBB) permeability properties, or are predicted to penetrate the BBB, these hits present novel starting points for optimization as future treatments for pFLA-caused diseases.

3.
Bioorg Med Chem Lett ; 27(23): 5310-5321, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29102393

RESUMEN

Previously we reported the results from an effort to improve Gram-negative antibacterial activity in the oxazolidinone class of antibiotics via a systematic medicinal chemistry campaign focused entirely on C-ring modifications. In that series we set about testing if the efflux and permeation barriers intrinsic to the outer membrane of Escherichia coli could be rationally overcome by designing analogs to reside in specific property limits associated with Gram-negative activity: i) low MW (<400), ii) high polarity (clogD7.4 <1), and iii) zwitterionic character at pH 7.4. Indeed, we observed that only analogs residing within these limits were able to overcome these barriers. Herein we report the results from a parallel effort where we explored structural changes throughout all three rings in the scaffold for the same purpose. Compounds were tested against a diagnostic MIC panel of Escherichia coli and Staphylococcus aureus strains to determine the impact of combining structural modifications in overcoming the OM barriers and in bridging the potency gap between the species. The results demonstrated that distributing the charge-carrying moieties across two rings was also beneficial for avoidance of the outer membrane barriers. Importantly, analysis of the structure-permeation relationship (SPR) obtained from this and the prior study indicated that in addition to MW, polarity, and zwitterionic character, having ≤4 rotatable bonds is also associated with evasion of the OM barriers. These combined results provide the medicinal chemist with a framework and strategy for overcoming the OM barriers in GNB in antibacterial drug discovery efforts.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Oxazolidinonas/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Escherichia coli/citología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxazolidinonas/síntesis química , Oxazolidinonas/química , Permeabilidad/efectos de los fármacos , Staphylococcus aureus/citología , Relación Estructura-Actividad
4.
ACS Infect Dis ; 2(6): 405-26, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27627629

RESUMEN

Novel antibacterials with activity against the Gram-negative bacteria associated with nosocomial infections, including Escherichia coli and other Enterobacteriaceae, are urgently needed due to the increasing prevalence of multidrug-resistant strains. A major obstacle that has stalled progress on nearly all small-molecule classes with potential for activity against these species has been achieving sufficient whole-cell activity, a difficult challenge due to the formidable outer membrane and efflux barriers intrinsic to these species. Using a set of compound design principles derived from available information relating physicochemical properties to Gram-negative entry or activity, we synthesized and evaluated a focused library of oxazolidinone analogues, a currently narrow spectrum class of antibacterials active only against Gram-positive bacteria. In this series, we have explored the effectiveness for improving Gram-negative activity by identifying and combining beneficial structural modifications in the C-ring region. We have found polar and/or charge-carrying modifications that, when combined in hybrid C-ring analogues, appear to largely overcome the efflux and/or permeability barriers, resulting in improved Gram-negative activity. In particular, those analogues least effected by efflux and the permeation barrier had significant zwitterionic character.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Oxazolidinonas/química , Oxazolidinonas/farmacología , Antibacterianos/síntesis química , Escherichia coli/fisiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA