Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9006, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637581

RESUMEN

Marine heatwaves are increasing in frequency and duration, threatening tropical reef ecosystems through intensified coral bleaching events. We examined a strikingly variable spatial pattern of bleaching in Moorea, French Polynesia following a heatwave that lasted from November 2018 to July 2019. In July 2019, four months after the onset of bleaching, we surveyed > 5000 individual colonies of the two dominant coral genera, Pocillopora and Acropora, at 10 m and 17 m water depths, at six forereef sites around the island where temperature was measured. We found severe bleaching increased with colony size for both coral genera, but Acropora bleached more severely than Pocillopora overall. Acropora bleached more at 10 m than 17 m, likely due to higher light availability at 10 m compared to 17 m, or greater daily temperature fluctuation at depth. Bleaching in Pocillopora corals did not differ with depth but instead varied with the interaction of colony size and Accumulated Heat Stress (AHS), in that larger colonies (> 30 cm) were more sensitive to AHS than mid-size (10-29 cm) or small colonies (5-9 cm). Our findings provide insight into complex interactions among coral taxa, colony size, and water depth that produce high spatial variation in bleaching and related coral mortality.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Agua , Temperatura
2.
Glob Chang Biol ; 30(1): e17088, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273492

RESUMEN

Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large-scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long-term (28 months, 2018-2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves in Acropora retusa, Porites lobata, and Pocillopora spp., which included: microbiome acclimatization in A. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave in Pocillopora spp. Moreover, observed microbiome dynamics significantly correlated with coral species-specific phenotypes. For example, bleaching and mortality in A. retusa both significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, while P. lobata colonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality in A. retusa. This study reveals evidence for coral species-specific microbial responses to repeated heatwaves and, importantly, suggests that host-dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Blanqueamiento de los Corales , Antozoos/fisiología , Respuesta al Choque Térmico
3.
Ecology ; 103(12): e3831, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35862066

RESUMEN

The outcomes of species interactions can vary greatly in time and space with the outcomes of some interactions determined by priority effects. On coral reefs, benthic algae rapidly colonize disturbed substrate. In the absence of top-down control from herbivorous fishes, these algae can inhibit the recruitment of reef-building corals, leading to a persistent phase shift to a macroalgae-dominated state. Yet, corals may also inhibit colonization by macroalgae, and therefore the effects of herbivores on algal communities may be strongest following disturbances that reduce coral cover. Here, we report the results from experiments conducted on the fore reef of Moorea, French Polynesia, where we: (1) tested the ability of macroalgae to invade coral-dominated and coral-depauperate communities under different levels of herbivory, (2) explored the ability of juvenile corals (Pocillopora spp.) to suppress macroalgae, and (3) quantified the direct and indirect effects of fish herbivores and corallivores on juvenile corals. We found that macroalgae proliferated when herbivory was low but only in recently disturbed communities where coral cover was also low. When coral cover was <10%, macroalgae increased 20-fold within 1 year under reduced herbivory conditions relative to high herbivory controls. Yet, when coral cover was high (50%), macroalgae were suppressed irrespective of the level of herbivory despite ample space for algal colonization. Once established in communities with low herbivory and low coral cover, macroalgae suppressed recruitment of coral larvae, reducing the capacity for coral replenishment. However, when we experimentally established small juvenile corals (2 cm diameter) following a disturbance, juvenile corals inhibited macroalgae from invading local neighborhoods, even in the absence of herbivores, indicating a strong priority effect in macroalgae-coral interactions. Surprisingly, fishes that initially facilitated coral recruitment by controlling algae had a net negative effect on juvenile corals via predation. Corallivores reduced the growth rates of corals exposed to fishes by ~30% relative to fish exclosures, despite increased competition with macroalgae within the exclosures. These results highlight that different processes are important for structuring coral reef ecosystems at different successional stages and underscore the need to consider multiple ecological processes and historical contingencies to predict coral community dynamics.


Asunto(s)
Antozoos , Algas Marinas , Animales , Ecosistema , Arrecifes de Coral , Herbivoria , Peces
4.
Glob Chang Biol ; 28(4): 1342-1358, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34908214

RESUMEN

For many long-lived taxa, such as trees and corals, older, and larger individuals often have the lowest mortality and highest fecundity. However, climate change-driven disturbances such as droughts and heatwaves may fundamentally alter typical size-dependent patterns of mortality and reproduction in these important foundation taxa. Working in Moorea, French Polynesia, we investigated how a marine heatwave in 2019, one of the most intense marine heatwaves at our sites over the past 30 years, drove patterns of coral bleaching and mortality. The marine heatwave drove island-wide mass coral bleaching that killed up to 76% and 65% of the largest individuals of the two dominant coral genera, Pocillopora and Acropora, respectively. Colonies of Pocillopora and Acropora ≥30 cm diameter were ~3.5× and ~1.3×, respectively, more likely to die than colonies <30-cm diameter. Typically, annual mortality in these corals is concentrated on the smallest size classes. Yet, this heatwave dramatically reshaped this pattern, with heat stress disproportionately killing larger coral colonies and equalizing annual mortality rates across the size spectrum. This shift in the size-mortality relationship reduced the overall fecundity of these genera by >60% because big corals are disproportionately important for reproduction on reefs. Additionally, the survivorship of microscopic coral recruits, critical for the recovery of corals following disturbances, declined to 2%, over an order of magnitude lower compared to a year without elevated thermal stress, where 33% of coral recruits survived. While other research has shown that larger corals can bleach more frequently than smaller corals, we show the severe impact this phenomenon can have at the reef-wide scale. As marine heatwaves become more frequent and intense, disproportionate mortality of the largest, most fecund corals and near-complete loss of entire cohorts of newly-settled coral recruits will likely reduce the recovery capacity of these iconic ecosystems.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Cambio Climático , Ecosistema , Respuesta al Choque Térmico , Humanos
5.
Sci Rep ; 11(1): 23546, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876599

RESUMEN

Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo'orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observed Acropora hyacinthus individuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments from A. hyacinthus colonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation of energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance.


Asunto(s)
Antozoos/fisiología , Blanqueamiento de los Corales/efectos adversos , Animales , Arrecifes de Coral , Metabolismo Energético/fisiología , Femenino , Respuesta al Choque Térmico/fisiología , Masculino , Polinesia , Reproducción/fisiología , Simbiosis/fisiología
6.
Proc Natl Acad Sci U S A ; 117(10): 5351-5357, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094188

RESUMEN

Climate change is increasing the frequency and magnitude of temperature anomalies that cause coral bleaching, leading to widespread mortality of stony corals that can fundamentally alter reef structure and function. However, bleaching often is spatially variable for a given heat stress event, and drivers of this heterogeneity are not well resolved. While small-scale experiments have shown that excess nitrogen can increase the susceptibility of a coral colony to bleaching, we lack evidence that heterogeneity in nitrogen pollution can shape spatial patterns of coral bleaching across a seascape. Using island-wide surveys of coral bleaching and nitrogen availability within a Bayesian hierarchical modeling framework, we tested the hypothesis that excess nitrogen interacts with temperature anomalies to alter coral bleaching for the two dominant genera of branching corals in Moorea, French Polynesia. For both coral genera, Pocillopora and Acropora, heat stress primarily drove bleaching prevalence (i.e., the proportion of colonies on a reef that bleached). In contrast, the severity of bleaching (i.e., the proportion of an individual colony that bleached) was positively associated with both heat stress and nitrogen availability for both genera. Importantly, nitrogen interacted with heat stress to increase bleaching severity up to twofold when nitrogen was high and heat stress was relatively low. Our finding that excess nitrogen can trigger severe bleaching even under relatively low heat stress implies that mitigating nutrient pollution may enhance the resilience of coral communities in the face of mounting stresses from global climate change.


Asunto(s)
Antozoos/crecimiento & desarrollo , Cambio Climático , Contaminación Ambiental , Respuesta al Choque Térmico , Nitrógeno/toxicidad , Simbiosis , Animales , Chlorophyta/fisiología , Calor , Islas , Polinesia
7.
Mar Pollut Bull ; 144: 189-195, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31179987

RESUMEN

Populations of Acropora palmata and Orbicella faveolata, two important reef-building corals, have declined precipitously across the Caribbean region since at least the 1970s. Recruitment failure may be limiting population recovery, possibly due to lack of suitable settlement habitat. Here, we examine the effects of algal turfs and algal turfs + sediment, two widely abundant substrate types across the Florida Keys, on the settlement of these two ecologically-important species. We show that sediment significantly impedes coral settlement, reducing settlement 10- and 13-fold for A. palmata and O. faveolata, respectively, compared to turf algae alone. This result is corroborated by our field survey data that showed a strong, negative relationship between the abundance of turf + sediment and the abundance of juvenile corals. Turf algae alone did not reduce coral settlement. Our results suggest that sediment-laden turf algae are detrimental to settling corals, but that turf algae alone may be relatively benign.


Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Especies en Peligro de Extinción , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Microalgas/química , Animales , Región del Caribe , Ecología , Ecosistema , Florida
8.
PeerJ ; 2: e308, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24711964

RESUMEN

More diverse communities are thought to be more stable-the diversity-stability hypothesis-due to increased resistance to and recovery from disturbances. For example, high diversity can make the presence of resilient or fast growing species and key facilitations among species more likely. How natural, geographic biodiversity patterns and changes in biodiversity due to human activities mediate community-level disturbance dynamics is largely unknown, especially in diverse systems. For example, few studies have explored the role of diversity in tropical marine communities, especially at large scales. We tested the diversity-stability hypothesis by asking whether coral richness is related to resistance to and recovery from disturbances including storms, predator outbreaks, and coral bleaching on tropical coral reefs. We synthesized the results of 41 field studies conducted on 82 reefs, documenting changes in coral cover due to disturbance, across a global gradient of coral richness. Our results indicate that coral reefs in more species-rich regions were marginally less resistant to disturbance and did not recover more quickly. Coral community resistance was also highly dependent on pre-disturbance coral cover, probably due in part to the sensitivity of fast-growing and often dominant plating acroporid corals to disturbance. Our results suggest that coral communities in biodiverse regions, such as the western Pacific, may not be more resistant and resilient to natural and anthropogenic disturbances. Further analyses controlling for disturbance intensity and other drivers of coral loss and recovery could improve our understanding of the influence of diversity on community stability in coral reef ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...