Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
2.
Hum Brain Mapp ; 45(1): e26531, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37986643

RESUMEN

Magnetic resonance spectroscopy (MRS) is the primary method that can measure the levels of metabolites in the brain in vivo. To achieve its potential in clinical usage, the reliability of the measurement requires further articulation. Although there are many studies that investigate the reliability of gamma-aminobutyric acid (GABA), comparatively few studies have investigated the reliability of other brain metabolites, such as glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), phosphocreatine (PCr), or myo-inositol (mI), which all play a significant role in brain development and functions. In addition, previous studies which predominately used only two measurements (two data points) failed to provide the details of the time effect (e.g., time-of-day) on MRS measurement within subjects. Therefore, in this study, MRS data located in the anterior cingulate cortex (ACC) were repeatedly recorded across 1 year leading to at least 25 sessions for each subject with the aim of exploring the variability of other metabolites by using the index coefficient of variability (CV); the smaller the CV, the more reliable the measurements. We found that the metabolites of NAA, tNAA, and tCr showed the smallest CVs (between 1.43% and 4.90%), and the metabolites of Glu, Glx, mI, and tCho showed modest CVs (between 4.26% and 7.89%). Furthermore, we found that the concentration reference of the ratio to water results in smaller CVs compared to the ratio to tCr. In addition, we did not find any time-of-day effect on the MRS measurements. Collectively, the results of this study indicate that the MRS measurement is reasonably reliable in quantifying the levels of metabolites.


Asunto(s)
Encéfalo , Giro del Cíngulo , Humanos , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Ácido Aspártico/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Colina/metabolismo
3.
Front Psychiatry ; 14: 1256771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886114

RESUMEN

The notion of a connection between autism and music is as old as the first reported cases of autism, and music has been used as a therapeutic tool for many decades. Music therapy holds promise as an intervention for individuals with autism, harnessing their strengths in music processing to enhance communication and expression. While previous randomized controlled trials have demonstrated positive outcomes in terms of global improvement and quality of life, their reliance on psychological outcomes restricts our understanding of underlying mechanisms. This paper introduces the protocol for the Music for Autism study, a randomized crossover trial designed to investigate the effects of a 12-week music therapy intervention on a range of psychometric, neuroimaging, and biological outcomes in school-aged children with autism. The protocol builds upon previous research and aims to both replicate and expand upon findings that demonstrated improvements in social communication and functional brain connectivity following a music intervention. The primary objective of this trial is to determine whether music therapy leads to improvements in social communication and functional brain connectivity as compared to play-based therapy. In addition, secondary aims include exploring various relevant psychometric, neuroimaging, and biological outcomes. To achieve these objectives, we will enroll 80 participants aged 6-12 years in this international, assessor-blinded, crossover randomized controlled trial. Each participant will be randomly assigned to receive either music therapy or play-based therapy for a period of 12 weeks, followed by a 12-week washout period, after which they will receive the alternate intervention. Assessments will be conducted four times, before and after each intervention period. The protocol of the Music for Autism trial provides a comprehensive framework for studying the effects of music therapy on a range of multidimensional outcomes in children with autism. The findings from this trial have the potential to contribute to the development of evidence-based interventions that leverage strengths in music processing to address the complex challenges faced by individuals with autism. Clinical Trial Registration: Clinicaltrials.gov identifier NCT04936048.

4.
Brain Behav ; 13(10): e3219, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37587620

RESUMEN

INTRODUCTION: Brain age, the estimation of a person's age from magnetic resonance imaging (MRI) parameters, has been used as a general indicator of health. The marker requires however further validation for application in clinical contexts. Here, we show how brain age predictions perform for the same individual at various time points and validate our findings with age-matched healthy controls. METHODS: We used densely sampled T1-weighted MRI data from four individuals (from two densely sampled datasets) to observe how brain age corresponds to age and is influenced by acquisition and quality parameters. For validation, we used two cross-sectional datasets. Brain age was predicted by a pretrained deep learning model. RESULTS: We found small within-subject correlations between age and brain age. We also found evidence for the influence of field strength on brain age which replicated in the cross-sectional validation data and inconclusive effects of scan quality. CONCLUSION: The absence of maturation effects for the age range in the presented sample, brain age model bias (including training age distribution and field strength), and model error are potential reasons for small relationships between age and brain age in densely sampled longitudinal data. Clinical applications of brain age models should consider of the possibility of apparent biases caused by variation in the data acquisition process.

5.
Netw Neurosci ; 7(2): 769-786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397893

RESUMEN

Resting-state fMRI is an increasingly popular alternative to task-based fMRI. However, a formal quantification of the amount of information provided by resting-state fMRI as opposed to active task conditions about neural responses is lacking. We conducted a systematic comparison of the quality of inferences derived from a resting-state and a task fMRI paradigm by means of Bayesian Data Comparison. In this framework, data quality is formally quantified in information-theoretic terms as the precision and amount of information provided by the data on the parameters of interest. Parameters of effective connectivity, estimated from the cross-spectral densities of resting-state- and task time series by means of dynamic causal modelling (DCM), were subjected to the analysis. Data from 50 individuals undergoing resting-state and a Theory-of-Mind task were compared, both datasets provided by the Human Connectome Project. A threshold of very strong evidence was reached in favour of the Theory-of-Mind task (>10 bits or natural units) regarding information gain, which could be attributed to the active task condition eliciting stronger effective connectivity. Extending these analyses to other tasks and cognitive systems will reveal whether the superior informative value of task-based fMRI observed here is case specific or a more general trend.

6.
Front Neurol ; 14: 1166200, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475742

RESUMEN

Longitudinal studies have become more common in the past years due to their superiority over cross-sectional samples. In light of the ongoing replication crisis, the factors that may introduce variability in resting-state networks have been widely debated. This publication aimed to address the potential sources of variability, namely, time of day, sex, and age, in longitudinal studies within individual resting-state fMRI data. DCM was used to analyze the fMRI time series, extracting EC connectivity measures and parameters that define the BOLD signal. In addition, a two-way ANOVA was used to assess the change in EC and parameters that define the BOLD signal between data collection waves. The results indicate that time of day and gender have significant model evidence for the parameters that define the BOLD signal but not EC. From the ANOVA analysis, findings indicate that there was a significant change in the two nodes of the DMN and their connections with the fronto-parietal network. Overall, these findings suggest that in addition to age and gender, which are commonly accounted for in the fMRI data collection, studies should note the time of day, possibly treating it as a covariate in longitudinal samples.

7.
Laterality ; 28(2-3): 122-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37211653

RESUMEN

Laterality indices (LIs) quantify the left-right asymmetry of brain and behavioural variables and provide a measure that is statistically convenient and seemingly easy to interpret. Substantial variability in how structural and functional asymmetries are recorded, calculated, and reported, however, suggest little agreement on the conditions required for its valid assessment. The present study aimed for consensus on general aspects in this context of laterality research, and more specifically within a particular method or technique (i.e., dichotic listening, visual half-field technique, performance asymmetries, preference bias reports, electrophysiological recording, functional MRI, structural MRI, and functional transcranial Doppler sonography). Experts in laterality research were invited to participate in an online Delphi survey to evaluate consensus and stimulate discussion. In Round 0, 106 experts generated 453 statements on what they considered good practice in their field of expertise. Statements were organised into a 295-statement survey that the experts then were asked, in Round 1, to independently assess for importance and support, which further reduced the survey to 241 statements that were presented again to the experts in Round 2. Based on the Round 2 input, we present a set of critically reviewed key recommendations to record, assess, and report laterality research for various methods.


Asunto(s)
Encéfalo , Lateralidad Funcional , Humanos , Consenso , Encuestas y Cuestionarios , Encéfalo/diagnóstico por imagen , Técnica Delphi
8.
CNS Neurol Disord Drug Targets ; 22(2): 180-190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34533450

RESUMEN

BACKGROUND & OBJECTIVE: We have previously identified aberrant connectivity of the left precuneus, ventrolateral prefrontal cortex, anterior cingulate cortex, and anterior insula in patients with either a paranoid (schizophrenia), or a depressive syndrome (both unipolar and bipolar). In the current study, we attempted to replicate and expand these findings by including a healthy control sample and separating the patients in a depressive episode into two groups: unipolar and bipolar depression. We hypothesized that the connections between those major nodes of the resting state networks would demonstrate different patterns in the three patient groups compared to the healthy subjects. METHODS: Resting-state functional MRI was performed on a sample of 101 participants, of which 26 patients with schizophrenia (current psychotic episodes), 24 subjects with Bipolar Disorder (BD), 33 with Major Depressive Disorder (MDD) (both BD and MDD patients were in a current depressive episode), and 21 healthy controls. Spectral Dynamic Causal Modeling was used to calculate the coupling values between eight regions of interest, including the anterior precuneus (PRC), anterior hippocampus, anterior insula, angular gyrus, lateral Orbitofrontal Cortex (OFC), middle frontal gyrus, planum temporale, and anterior thalamus. RESULTS & CONCLUSION: We identified disturbed effective connectivity from the left lateral orbitofrontal cortex to the left anterior precuneus that differed significantly between unipolar depression, where the influence was inhibitory, and bipolar depression, where the effect was excitatory. A logistic regression analysis correctly classified 75% of patients with unipolar and bipolar depression based solely on the coupling values of this connection. In addition, patients with schizophrenia demonstrated negative effective connectivity from the anterior PRC to the lateral OFC, which distinguished them from healthy controls and patients with major depression. Future studies with unmedicated patients will be needed to establish the replicability of our findings.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen
9.
Front Hum Neurosci ; 16: 1021503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325431

RESUMEN

Our understanding of the cognitive functions of the human brain has tremendously benefited from the population functional Magnetic Resonance Imaging (fMRI) studies in the last three decades. The reliability and replicability of the fMRI results, however, have been recently questioned, which has been named the replication crisis. Sufficient statistical power is fundamental to alleviate the crisis, by either "going big," leveraging big datasets, or by "going small," densely scanning several participants. Here we reported a "going small" project implemented in our department, the Bergen breakfast scanning club (BBSC) project, in which three participants were intensively scanned across a year. It is expected this kind of new data collection method can provide novel insights into the variability of brain networks, facilitate research designs and inference, and ultimately lead to the improvement of the reliability of the fMRI results.

10.
Brain Sci ; 12(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36291316

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) is used as treatment for auditory verbal hallucinations (AVH). The theory behind the treatment is that tDCS increases activity in prefrontal cognitive control areas, which are assumed to be hypoactive, and simultaneously decreases activity in temporal speech perception areas, which are assumed to be hyperactive during AVH. We tested this hypofrontal/hypertemporal reversal theory by investigating anatomical, neurotransmitter, brain activity, and network connectivity changes over the course of tDCS treatment. METHODS: A double-blind, randomized controlled trial was conducted with 21 patients receiving either sham or real tDCS treatment (2 mA) twice daily for 5 days. The anode was placed over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the left temporo-parietal cortex (TPC). Multimodal neuroimaging as well as clinical and neurocognitive functioning assessment were performed before, immediately after, and three months after treatment. RESULTS: We found a small reduction in AVH severity in the real tDCS group, but no corresponding neuroimaging changes in either DLPFCD or TPC. LIMITATIONS: The study has a small sample size. CONCLUSION: The results suggest that the currently leading theory behind tDCS treatment of AVH may need to be revised, if confirmed by studies with larger N. Tentative findings point to the involvement of Broca's area as a critical structure for tDCS treatment.

11.
Brain Connect ; 12(10): 870-882, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35473334

RESUMEN

Introduction: Replicability has become an increasing focus within the scientific communities with the ongoing "replication crisis." One area that appears to struggle with unreliable results is resting-state functional magnetic resonance imaging (rs-fMRI). Therefore, the current study aimed at improving the knowledge of endogenous factors that contribute to inter-individual variability. Methods: Arterial blood pressure (BP), body mass, hematocrit, and glycated hemoglobin were investigated as potential sources of between-subject variability in rs-fMRI, in healthy individuals. Whether changes in resting-state networks (rs-networks) could be attributed to variability in the blood-oxygen-level-dependent (BOLD)-signal, changes in neuronal activity, or both was of special interest. Within-subject parameters were estimated by utilizing dynamic-causal modeling, as it allows to make inferences on the estimated hemodynamic (BOLD-signal dynamics) and neuronal parameters (effective connectivity) separately. Results: The results of the analyses imply that BP and body mass can cause between-subject and between-group variability in the BOLD-signal and that all the included factors can affect the underlying connectivity. Discussion: Given the results of the current and previous studies, rs-fMRI results appear to be susceptible to a range of factors, which is likely to contribute to the low degree of replicability of these studies. Interestingly, the highest degree of variability seems to appear within the much-studied default mode network and its connections to other networks. Impact statement We believe that thanks to the evidence that we have collected by analyzing the well-controlled data of the Human Connectome Project with dynamic-causal modeling (DCM) and by focusing not only on the effective connectivity, which is the typical way of using DCM, but also by analyzing the underlying hemodynamic parameters, we were able to explore the underlying vascular dependencies in a much broader perspective. Our results challenge the premise for studying changes in the default mode network as a clinical marker of disease, and we add to the growing list of factors that contribute to resting-state network variability.


Asunto(s)
Mapeo Encefálico , Conectoma , Humanos , Mapeo Encefálico/métodos , Hemoglobina Glucada , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Hematócrito , Presión Sanguínea , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Hemodinámica , Espectroscopía de Resonancia Magnética
12.
Front Behav Neurosci ; 16: 806520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309683

RESUMEN

The present study replicates a known visual language paradigm, and extends it to a paradigm that is independent from the sensory modality of the stimuli and, hence, could be administered either visually or aurally, such that both patients with limited sight or hearing could be examined. The stimuli were simple sentences, but required the subject not only to understand the content of the sentence but also to formulate a response that had a semantic relation to the content of the presented sentence. Thereby, this paradigm does not only test perception of the stimuli, but also to some extend sentence and semantic processing, and covert speech production within one task. When the sensory base-line condition was subtracted, both the auditory and visual version of the paradigm demonstrated a broadly overlapping and asymmetric network, comprising distinct areas of the left posterior temporal lobe, left inferior frontal areas, left precentral gyrus, and supplementary motor area. The consistency of activations and their asymmetry was evaluated with a conjunction analysis, probability maps, and intraclass correlation coefficients (ICC). This underlying network was further analyzed with dynamic causal modeling (DCM) to explore whether not only the same brain areas were involved, but also the network structure and information flow were the same between the sensory modalities. In conclusion, the paradigm reliably activated the most central parts of the speech and language network with a great consistency across subjects, and independently of whether the stimuli were administered aurally or visually. However, there was individual variability in the degree of functional asymmetry between the two sensory conditions.

13.
Cogn Neuropsychiatry ; 27(4): 255-272, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118930

RESUMEN

INTRODUCTION: Individuals experiencing auditory hallucinations (AH) tend to perceive voices when exposed to random noise. However, the factors driving this tendency remain unclear. The present study examined the interaction of a top-down (expectations) and bottom-up (type of noise) process to better understand the mechanisms that underlie AH. METHODS: Fifty-two healthy individuals (29 with high proneness and 23 with low proneness to AH) completed a signal detection task, in which they listened to pre-recorded sentences. The last word was either masked by noise or only noise was presented without the word. Two types of noise existed (speech-related versus speech-unrelated frequencies) and words were characterised by either high or low levels of semantic expectation. RESULTS: Participants with high proneness to AH showed a more liberal decision bias (i.e., they were more likely to report having heard a word) and poorer discrimination ability as compared to participants with low proneness to AH - but only when the word was masked by speech-related noises and the level of expectation was high. Further, the more liberal decision bias correlated negatively with the tendency to experience AH. CONCLUSION: This novel paradigm demonstrated an interaction between top-down (level of expectation) and bottom-up (type of noise) processes, supporting current theoretical models of AH.


Asunto(s)
Semántica , Percepción del Habla , Percepción Auditiva , Alucinaciones/diagnóstico , Humanos , Habla
14.
Brain Connect ; 12(6): 515-523, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34636252

RESUMEN

Introduction: In the light of the ongoing replication crisis in the field of neuroimaging, it is necessary to assess the possible exogenous and endogenous factors that may affect functional magnetic resonance imaging (fMRI). The current project investigated time-of-day effects in the spontaneous fluctuations (<0.1 Hz) of the blood oxygenation level dependent (BOLD) signal. Method: Using data from the human connectome project release S1200, cross-spectral density dynamic causal modeling (DCM) was used to analyze time-dependent effects on the hemodynamic response and effective connectivity parameters. The DCM analysis covered three networks, namely the default mode network, the central executive network, and the saliency network. Hierarchical group-parametric empirical Bayes (PEB) was used to test varying design-matrices against the time-of-day model. Results: Hierarchical group-PEB found no support for changes in effective connectivity, whereas the hemodynamic parameters exhibited a significant time-of-day dependent effect, indicating a diurnal vascular effect that might affect the measured BOLD signal in the absence of any diurnal variations of the underlying neuronal activations and effective connectivity. Conclusion: We conclude that these findings urge the need to account for the time of data acquisition in future MRI studies and suggest that time-of-day dependent metabolic variations contribute to reduced reliability in resting-state fMRI studies.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados
15.
Front Neurosci ; 15: 674050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512236

RESUMEN

Auditory repetition suppression and omission activation are opposite neural phenomena and manifestations of principles of predictive processing. Repetition suppression describes the temporal decrease in neural activity when a stimulus is constant or repeated in an expected temporal fashion; omission activity is the transient increase in neural activity when a stimulus is temporarily and unexpectedly absent. The temporal, repetitive nature of musical rhythms is ideal for investigating these phenomena. During an fMRI session, 10 healthy participants underwent scanning while listening to musical rhythms with two levels of metric complexity, and with beat omissions with different positional complexity. Participants first listened to 16-s-long presentations of continuous rhythms, before listening to a longer continuous presentation with beat omissions quasi-randomly introduced. We found deactivation in bilateral superior temporal gyri during the repeated presentation of the normal, unaltered rhythmic stimulus, with more suppression of activity in the left hemisphere. Omission activation of bilateral middle temporal gyri was right lateralized. Persistent activity was found in areas including the supplementary motor area, caudate nucleus, anterior insula, frontal areas, and middle and posterior cingulate cortex, not overlapping with either listening, suppression, or omission activation. This suggests that the areas are perhaps specialized for working memory maintenance. We found no effect of metric complexity for either the normal presentation or omissions, but we found evidence for a small effect of omission position-at an uncorrected threshold-where omissions in the more metrical salient position, i.e., the first position in the bar, showed higher activation in anterior cingulate/medial superior frontal gyrus, compared to omissions in the less salient position, in line with the role of the anterior cingulate cortex for saliency detection. The results are consistent with findings in our previous studies on Parkinson's disease, but are put into a bigger theoretical frameset.

16.
Front Hum Neurosci ; 15: 605166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658913

RESUMEN

Motion-sound synesthesia is characterized by illusory auditory sensations linked to the pattern and rhythms of motion (dubbed "Mickey Mousing" as in cinema) of visually experienced but soundless object, like an optical flow array, a ball bouncing or a horse galloping. In an MRI study with a group of three synesthetes and a group of eighteen control participants, we found structural changes in the brains of synesthetes in the subcortical multisensory areas of the superior and inferior colliculi. In addition, functional magnetic resonance imaging data showed activity in motion-sensitive regions, as well as temporal and occipital areas, and the cerebellum. However, the synesthetes had a higher activation within the left and right cuneus, with stronger activations when viewing optical flow stimuli. There was also a general difference in connectivity of the colliculi with the above mentioned regions between the two groups. These findings implicate low-level mechanisms within the human neuroaxis as a substrate for local connectivity and cross activity between perceptual processes that are "distant" in terms of cortical topography. The present findings underline the importance of considering the role of subcortical systems and their connectivity to multimodal regions of the cortex and they strengthen a parsimonious account of synesthesia, at the least of the visual-auditory type.

17.
Front Behav Neurosci ; 15: 802319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35115913

RESUMEN

Dichotic listening along with the right-ear advantage (REA) has been a standard method of investigating auditory laterality ever since it was first introduced into neuropsychology in the early 1960s. Beginning in the 1980s, authors reported that it was possible to modulate the bottom-up driven perceptual REA by instructing subjects to selectively attend to and report only from the right or left ear. In the present study, we investigated neuronal correlates of both the bottom-up and top-down modulation of the REA through two fMRI analysis approaches: a traditional region approach and a network connectivity approach. Blood-Oxygenation-Level-Dependent (BOLD) fMRI data were acquired while subjects performed the standard forced-attention paradigm. We asked two questions, could the behavioral REA be replicated in unique brain markers, and second if the profound instruction-induced modulation of the REA found in behavioral data would correspond to a similar modulation of brain activation, both region- and network-specific modulations. The subjects were 70 healthy adult right-handers, about half men and half women. fMRI data were acquired in a 3T MR scanner, and the behavioral results replicated previous findings with a REA in the non-forced (NF) and forced-right (FR) conditions, and a tendency for a left-ear advantage (LEA) in the FL-condition. The fMRI data showed unique activations in the speech perception areas of the left temporal lobe when directly contrasted with activations in the homologous right side. However, there were no remaining unique activations when the FR- and FL-conditions were contrasted against each other, and with the NF-condition, using a conservative significance thresholding. The fMRI results are conceptualized within a network connectivity frame of reference, especially with reference to the extrinsic mode network (EMN). The EMN is a generalized task-positive network that is upregulated whenever the task demands exceed a certain threshold irrespective of the specifics and demands of the task. This could explain the similarity of activations for the FR- and FL-conditions, despite the clear differences in behavior.

18.
Eur J Neurosci ; 53(2): 449-459, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32746504

RESUMEN

The underlying neural mechanisms of transcranial direct current stimulation (tDCS), especially beyond the primary motor cortex, remain unclear. Several studies examined tDCS effects on either functional activity, neurotransmitters or behavior but few investigated those aspects together to reveal how the brain responds to tDCS. The objective is to elucidate the underlying mechanisms of tDCS using a multimodal approach that extends from behavioral to neurotransmitter levels of explanation. Thirty-two healthy participants performed an auditory dichotic listening task at two visits, one session with sham and one session with real tDCS (2 mA) while simultaneously undergoing functional magnetic resonance imaging (fMRI). The anode and cathode were placed over the left temporo-parietal cortex (TPC) and dorsolateral prefrontal cortex, respectively. Before and after simultaneous dichotic listening/fMRI/tDCS, combined glutamate and glutamine (Glx) and myo-inositol levels were assessed in the stimulated areas. While fMRI and dichotic listening showed expected functional activity and behavioral effects, neither method demonstrated differences between real and sham stimulation. Glx only showed a statistical trend towards higher levels after real tDCS in both stimulated brain areas. There were no significant correlations between behavior and Glx. Despite a reasonable sample size, electrical field strength, and replication of behavioral and functional activity results, tDCS had little to no effect on dichotic listening, Glx, and functional activity. The study emphasizes that findings about the underlying neural mechanisms of the primary motor cortex cannot simply be generalized to other brain areas. Particularly, the TPC might be less sensitive to tDCS. Moreover, the study demonstrates the general feasibility of multimodal approaches.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Método Doble Ciego , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal , Lóbulo Temporal
19.
Heliyon ; 6(12): e05658, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33364477

RESUMEN

OBJECTIVE: Previous studies of the consequences of unilateral hearing loss (UHL) on the functional-structural organization of the brain has included subjects with various degrees of UHL. We suggest that the consequences of a total loss of hearing in one ear might differ from those seen in subjects with residual hearing in the affected ear. Thus, the main aim of the present study was to compare the structural properties of auditory and non-auditory brain regions in persons with complete UHL to those of normal hearing controls. We hypothesize that the consequences of complete UHL following treatment for vestibular schwannoma will differ between ipsi- and contralateral structures, as well as between right- and left side deafness. DESIGN: A 3T Siemens Prisma MR-scanner was used. Anatomical images were acquired using a high-resolution T1-weighted sequence. Grey- and white matter volumes were assessed using voxel-based morphometry. STUDY SAMPLE: Twenty-two patients with left- or right-side unilateral hearing loss. Fifty normal hearing controls. RESULTS: Reductions in grey- and white matter volumes were seen in cortical and sub-cortical regions, mainly in the right hemisphere including the auditory cortex, lingual gyrus, cuneus, middle temporal gyrus, occipital fusiform gyrus, middle cingulate gyrus and the superior temporal gyrus. Patients displayed reduced grey- and white matter volumes in cerebellar exterior structures ipsilateral to the tumor side. CONCLUSION: When compared to controls, right side hearing loss yields more widespread reduction of grey matter volume than left side hearing loss. The findings of reduced grey- and white matter volumes in auditory and non-auditory brain regions could be related to problems with speech perception in adverse listening conditions, increased listening effort and reduced quality of life reported by persons with unilateral hearing loss despite normal hearing in the unaffected ear.

20.
Sci Rep ; 10(1): 15059, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929186

RESUMEN

In a stable environment the brain can minimize processing required for sensory input by forming a predictive model of the surrounding world and suppressing neural response to predicted stimuli. Unpredicted stimuli lead to a prediction error signal propagation through the perceptual network, and resulting adjustment to the predictive model. The inter-regional plasticity which enables the model-building and model-adjustment is hypothesized to be mediated via glutamatergic receptors. While pharmacological challenge studies with glutamate receptor ligands have demonstrated impact on prediction-error indices, it is not clear how inter-individual differences in the glutamate system affect the prediction-error processing in non-medicated state. In the present study we examined 20 healthy young subjects with resting-state proton MRS spectroscopy to characterize glutamate + glutamine (rs-Glx) levels in their Heschl's gyrus (HG), and related this to HG functional connectivity during a roving auditory oddball protocol. No rs-Glx effects were found within the frontotemporal prediction-error network. Larger rs-Glx signal was related to stronger connectivity between HG and bilateral inferior parietal lobule during unpredictable auditory stimulation. We also found effects of rs-Glx on the coherence of default mode network and frontoparietal network during unpredictable auditory stimulation. Our results demonstrate the importance of Glx in modulating long-range connections and wider networks in the brain during perceptual inference.


Asunto(s)
Atención , Corteza Auditiva/fisiología , Conectoma , Ácido Glutámico/metabolismo , Adulto , Corteza Auditiva/metabolismo , Percepción Auditiva , Femenino , Humanos , Masculino , Plasticidad Neuronal , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...